| Step |
Hyp |
Ref |
Expression |
| 1 |
|
suplesup.a |
|- ( ph -> A C_ RR ) |
| 2 |
|
suplesup.b |
|- ( ph -> B C_ RR* ) |
| 3 |
|
suplesup.c |
|- ( ph -> A. x e. A A. y e. RR+ E. z e. B ( x - y ) < z ) |
| 4 |
|
ressxr |
|- RR C_ RR* |
| 5 |
1 4
|
sstrdi |
|- ( ph -> A C_ RR* ) |
| 6 |
|
supxrcl |
|- ( A C_ RR* -> sup ( A , RR* , < ) e. RR* ) |
| 7 |
5 6
|
syl |
|- ( ph -> sup ( A , RR* , < ) e. RR* ) |
| 8 |
7
|
adantr |
|- ( ( ph /\ sup ( A , RR* , < ) = +oo ) -> sup ( A , RR* , < ) e. RR* ) |
| 9 |
|
eqidd |
|- ( ( ph /\ sup ( A , RR* , < ) = +oo ) -> +oo = +oo ) |
| 10 |
|
simpr |
|- ( ( ph /\ sup ( A , RR* , < ) = +oo ) -> sup ( A , RR* , < ) = +oo ) |
| 11 |
|
peano2re |
|- ( w e. RR -> ( w + 1 ) e. RR ) |
| 12 |
11
|
adantl |
|- ( ( ( ph /\ sup ( A , RR* , < ) = +oo ) /\ w e. RR ) -> ( w + 1 ) e. RR ) |
| 13 |
5
|
adantr |
|- ( ( ph /\ sup ( A , RR* , < ) = +oo ) -> A C_ RR* ) |
| 14 |
|
supxrunb2 |
|- ( A C_ RR* -> ( A. r e. RR E. x e. A r < x <-> sup ( A , RR* , < ) = +oo ) ) |
| 15 |
13 14
|
syl |
|- ( ( ph /\ sup ( A , RR* , < ) = +oo ) -> ( A. r e. RR E. x e. A r < x <-> sup ( A , RR* , < ) = +oo ) ) |
| 16 |
10 15
|
mpbird |
|- ( ( ph /\ sup ( A , RR* , < ) = +oo ) -> A. r e. RR E. x e. A r < x ) |
| 17 |
16
|
adantr |
|- ( ( ( ph /\ sup ( A , RR* , < ) = +oo ) /\ w e. RR ) -> A. r e. RR E. x e. A r < x ) |
| 18 |
|
breq1 |
|- ( r = ( w + 1 ) -> ( r < x <-> ( w + 1 ) < x ) ) |
| 19 |
18
|
rexbidv |
|- ( r = ( w + 1 ) -> ( E. x e. A r < x <-> E. x e. A ( w + 1 ) < x ) ) |
| 20 |
19
|
rspcva |
|- ( ( ( w + 1 ) e. RR /\ A. r e. RR E. x e. A r < x ) -> E. x e. A ( w + 1 ) < x ) |
| 21 |
12 17 20
|
syl2anc |
|- ( ( ( ph /\ sup ( A , RR* , < ) = +oo ) /\ w e. RR ) -> E. x e. A ( w + 1 ) < x ) |
| 22 |
|
1rp |
|- 1 e. RR+ |
| 23 |
22
|
a1i |
|- ( ( ph /\ x e. A ) -> 1 e. RR+ ) |
| 24 |
3
|
r19.21bi |
|- ( ( ph /\ x e. A ) -> A. y e. RR+ E. z e. B ( x - y ) < z ) |
| 25 |
|
oveq2 |
|- ( y = 1 -> ( x - y ) = ( x - 1 ) ) |
| 26 |
25
|
breq1d |
|- ( y = 1 -> ( ( x - y ) < z <-> ( x - 1 ) < z ) ) |
| 27 |
26
|
rexbidv |
|- ( y = 1 -> ( E. z e. B ( x - y ) < z <-> E. z e. B ( x - 1 ) < z ) ) |
| 28 |
27
|
rspcva |
|- ( ( 1 e. RR+ /\ A. y e. RR+ E. z e. B ( x - y ) < z ) -> E. z e. B ( x - 1 ) < z ) |
| 29 |
23 24 28
|
syl2anc |
|- ( ( ph /\ x e. A ) -> E. z e. B ( x - 1 ) < z ) |
| 30 |
29
|
adantlr |
|- ( ( ( ph /\ w e. RR ) /\ x e. A ) -> E. z e. B ( x - 1 ) < z ) |
| 31 |
30
|
3adant3 |
|- ( ( ( ph /\ w e. RR ) /\ x e. A /\ ( w + 1 ) < x ) -> E. z e. B ( x - 1 ) < z ) |
| 32 |
|
nfv |
|- F/ z ( ( ph /\ w e. RR ) /\ x e. A /\ ( w + 1 ) < x ) |
| 33 |
|
simp11r |
|- ( ( ( ( ph /\ w e. RR ) /\ x e. A /\ ( w + 1 ) < x ) /\ z e. B /\ ( x - 1 ) < z ) -> w e. RR ) |
| 34 |
4 33
|
sselid |
|- ( ( ( ( ph /\ w e. RR ) /\ x e. A /\ ( w + 1 ) < x ) /\ z e. B /\ ( x - 1 ) < z ) -> w e. RR* ) |
| 35 |
1
|
sselda |
|- ( ( ph /\ x e. A ) -> x e. RR ) |
| 36 |
|
1red |
|- ( ( ph /\ x e. A ) -> 1 e. RR ) |
| 37 |
35 36
|
resubcld |
|- ( ( ph /\ x e. A ) -> ( x - 1 ) e. RR ) |
| 38 |
37
|
adantlr |
|- ( ( ( ph /\ w e. RR ) /\ x e. A ) -> ( x - 1 ) e. RR ) |
| 39 |
38
|
3adant3 |
|- ( ( ( ph /\ w e. RR ) /\ x e. A /\ ( w + 1 ) < x ) -> ( x - 1 ) e. RR ) |
| 40 |
39
|
3ad2ant1 |
|- ( ( ( ( ph /\ w e. RR ) /\ x e. A /\ ( w + 1 ) < x ) /\ z e. B /\ ( x - 1 ) < z ) -> ( x - 1 ) e. RR ) |
| 41 |
4 40
|
sselid |
|- ( ( ( ( ph /\ w e. RR ) /\ x e. A /\ ( w + 1 ) < x ) /\ z e. B /\ ( x - 1 ) < z ) -> ( x - 1 ) e. RR* ) |
| 42 |
2
|
sselda |
|- ( ( ph /\ z e. B ) -> z e. RR* ) |
| 43 |
42
|
adantlr |
|- ( ( ( ph /\ w e. RR ) /\ z e. B ) -> z e. RR* ) |
| 44 |
43
|
3ad2antl1 |
|- ( ( ( ( ph /\ w e. RR ) /\ x e. A /\ ( w + 1 ) < x ) /\ z e. B ) -> z e. RR* ) |
| 45 |
44
|
3adant3 |
|- ( ( ( ( ph /\ w e. RR ) /\ x e. A /\ ( w + 1 ) < x ) /\ z e. B /\ ( x - 1 ) < z ) -> z e. RR* ) |
| 46 |
|
simp3 |
|- ( ( ( ph /\ w e. RR ) /\ x e. A /\ ( w + 1 ) < x ) -> ( w + 1 ) < x ) |
| 47 |
|
simp1r |
|- ( ( ( ph /\ w e. RR ) /\ x e. A /\ ( w + 1 ) < x ) -> w e. RR ) |
| 48 |
|
1red |
|- ( ( ( ph /\ w e. RR ) /\ x e. A /\ ( w + 1 ) < x ) -> 1 e. RR ) |
| 49 |
35
|
adantlr |
|- ( ( ( ph /\ w e. RR ) /\ x e. A ) -> x e. RR ) |
| 50 |
49
|
3adant3 |
|- ( ( ( ph /\ w e. RR ) /\ x e. A /\ ( w + 1 ) < x ) -> x e. RR ) |
| 51 |
47 48 50
|
ltaddsubd |
|- ( ( ( ph /\ w e. RR ) /\ x e. A /\ ( w + 1 ) < x ) -> ( ( w + 1 ) < x <-> w < ( x - 1 ) ) ) |
| 52 |
46 51
|
mpbid |
|- ( ( ( ph /\ w e. RR ) /\ x e. A /\ ( w + 1 ) < x ) -> w < ( x - 1 ) ) |
| 53 |
52
|
3ad2ant1 |
|- ( ( ( ( ph /\ w e. RR ) /\ x e. A /\ ( w + 1 ) < x ) /\ z e. B /\ ( x - 1 ) < z ) -> w < ( x - 1 ) ) |
| 54 |
|
simp3 |
|- ( ( ( ( ph /\ w e. RR ) /\ x e. A /\ ( w + 1 ) < x ) /\ z e. B /\ ( x - 1 ) < z ) -> ( x - 1 ) < z ) |
| 55 |
34 41 45 53 54
|
xrlttrd |
|- ( ( ( ( ph /\ w e. RR ) /\ x e. A /\ ( w + 1 ) < x ) /\ z e. B /\ ( x - 1 ) < z ) -> w < z ) |
| 56 |
55
|
3exp |
|- ( ( ( ph /\ w e. RR ) /\ x e. A /\ ( w + 1 ) < x ) -> ( z e. B -> ( ( x - 1 ) < z -> w < z ) ) ) |
| 57 |
32 56
|
reximdai |
|- ( ( ( ph /\ w e. RR ) /\ x e. A /\ ( w + 1 ) < x ) -> ( E. z e. B ( x - 1 ) < z -> E. z e. B w < z ) ) |
| 58 |
31 57
|
mpd |
|- ( ( ( ph /\ w e. RR ) /\ x e. A /\ ( w + 1 ) < x ) -> E. z e. B w < z ) |
| 59 |
58
|
3exp |
|- ( ( ph /\ w e. RR ) -> ( x e. A -> ( ( w + 1 ) < x -> E. z e. B w < z ) ) ) |
| 60 |
59
|
adantlr |
|- ( ( ( ph /\ sup ( A , RR* , < ) = +oo ) /\ w e. RR ) -> ( x e. A -> ( ( w + 1 ) < x -> E. z e. B w < z ) ) ) |
| 61 |
60
|
rexlimdv |
|- ( ( ( ph /\ sup ( A , RR* , < ) = +oo ) /\ w e. RR ) -> ( E. x e. A ( w + 1 ) < x -> E. z e. B w < z ) ) |
| 62 |
21 61
|
mpd |
|- ( ( ( ph /\ sup ( A , RR* , < ) = +oo ) /\ w e. RR ) -> E. z e. B w < z ) |
| 63 |
4
|
a1i |
|- ( ph -> RR C_ RR* ) |
| 64 |
63
|
sselda |
|- ( ( ph /\ w e. RR ) -> w e. RR* ) |
| 65 |
64
|
ad2antrr |
|- ( ( ( ( ph /\ w e. RR ) /\ z e. B ) /\ w < z ) -> w e. RR* ) |
| 66 |
43
|
adantr |
|- ( ( ( ( ph /\ w e. RR ) /\ z e. B ) /\ w < z ) -> z e. RR* ) |
| 67 |
|
simpr |
|- ( ( ( ( ph /\ w e. RR ) /\ z e. B ) /\ w < z ) -> w < z ) |
| 68 |
65 66 67
|
xrltled |
|- ( ( ( ( ph /\ w e. RR ) /\ z e. B ) /\ w < z ) -> w <_ z ) |
| 69 |
68
|
ex |
|- ( ( ( ph /\ w e. RR ) /\ z e. B ) -> ( w < z -> w <_ z ) ) |
| 70 |
69
|
adantllr |
|- ( ( ( ( ph /\ sup ( A , RR* , < ) = +oo ) /\ w e. RR ) /\ z e. B ) -> ( w < z -> w <_ z ) ) |
| 71 |
70
|
reximdva |
|- ( ( ( ph /\ sup ( A , RR* , < ) = +oo ) /\ w e. RR ) -> ( E. z e. B w < z -> E. z e. B w <_ z ) ) |
| 72 |
62 71
|
mpd |
|- ( ( ( ph /\ sup ( A , RR* , < ) = +oo ) /\ w e. RR ) -> E. z e. B w <_ z ) |
| 73 |
72
|
ralrimiva |
|- ( ( ph /\ sup ( A , RR* , < ) = +oo ) -> A. w e. RR E. z e. B w <_ z ) |
| 74 |
|
supxrunb1 |
|- ( B C_ RR* -> ( A. w e. RR E. z e. B w <_ z <-> sup ( B , RR* , < ) = +oo ) ) |
| 75 |
2 74
|
syl |
|- ( ph -> ( A. w e. RR E. z e. B w <_ z <-> sup ( B , RR* , < ) = +oo ) ) |
| 76 |
75
|
adantr |
|- ( ( ph /\ sup ( A , RR* , < ) = +oo ) -> ( A. w e. RR E. z e. B w <_ z <-> sup ( B , RR* , < ) = +oo ) ) |
| 77 |
73 76
|
mpbid |
|- ( ( ph /\ sup ( A , RR* , < ) = +oo ) -> sup ( B , RR* , < ) = +oo ) |
| 78 |
9 10 77
|
3eqtr4d |
|- ( ( ph /\ sup ( A , RR* , < ) = +oo ) -> sup ( A , RR* , < ) = sup ( B , RR* , < ) ) |
| 79 |
8 78
|
xreqled |
|- ( ( ph /\ sup ( A , RR* , < ) = +oo ) -> sup ( A , RR* , < ) <_ sup ( B , RR* , < ) ) |
| 80 |
|
supeq1 |
|- ( A = (/) -> sup ( A , RR* , < ) = sup ( (/) , RR* , < ) ) |
| 81 |
|
xrsup0 |
|- sup ( (/) , RR* , < ) = -oo |
| 82 |
81
|
a1i |
|- ( A = (/) -> sup ( (/) , RR* , < ) = -oo ) |
| 83 |
80 82
|
eqtrd |
|- ( A = (/) -> sup ( A , RR* , < ) = -oo ) |
| 84 |
83
|
adantl |
|- ( ( ph /\ A = (/) ) -> sup ( A , RR* , < ) = -oo ) |
| 85 |
|
supxrcl |
|- ( B C_ RR* -> sup ( B , RR* , < ) e. RR* ) |
| 86 |
2 85
|
syl |
|- ( ph -> sup ( B , RR* , < ) e. RR* ) |
| 87 |
|
mnfle |
|- ( sup ( B , RR* , < ) e. RR* -> -oo <_ sup ( B , RR* , < ) ) |
| 88 |
86 87
|
syl |
|- ( ph -> -oo <_ sup ( B , RR* , < ) ) |
| 89 |
88
|
adantr |
|- ( ( ph /\ A = (/) ) -> -oo <_ sup ( B , RR* , < ) ) |
| 90 |
84 89
|
eqbrtrd |
|- ( ( ph /\ A = (/) ) -> sup ( A , RR* , < ) <_ sup ( B , RR* , < ) ) |
| 91 |
90
|
adantlr |
|- ( ( ( ph /\ -. sup ( A , RR* , < ) = +oo ) /\ A = (/) ) -> sup ( A , RR* , < ) <_ sup ( B , RR* , < ) ) |
| 92 |
|
simpll |
|- ( ( ( ph /\ -. sup ( A , RR* , < ) = +oo ) /\ -. A = (/) ) -> ph ) |
| 93 |
1
|
adantr |
|- ( ( ph /\ -. A = (/) ) -> A C_ RR ) |
| 94 |
|
neqne |
|- ( -. A = (/) -> A =/= (/) ) |
| 95 |
94
|
adantl |
|- ( ( ph /\ -. A = (/) ) -> A =/= (/) ) |
| 96 |
|
supxrgtmnf |
|- ( ( A C_ RR /\ A =/= (/) ) -> -oo < sup ( A , RR* , < ) ) |
| 97 |
93 95 96
|
syl2anc |
|- ( ( ph /\ -. A = (/) ) -> -oo < sup ( A , RR* , < ) ) |
| 98 |
97
|
adantlr |
|- ( ( ( ph /\ -. sup ( A , RR* , < ) = +oo ) /\ -. A = (/) ) -> -oo < sup ( A , RR* , < ) ) |
| 99 |
|
simpr |
|- ( ( ph /\ -. sup ( A , RR* , < ) = +oo ) -> -. sup ( A , RR* , < ) = +oo ) |
| 100 |
|
simpl |
|- ( ( ph /\ -. sup ( A , RR* , < ) = +oo ) -> ph ) |
| 101 |
|
nltpnft |
|- ( sup ( A , RR* , < ) e. RR* -> ( sup ( A , RR* , < ) = +oo <-> -. sup ( A , RR* , < ) < +oo ) ) |
| 102 |
100 7 101
|
3syl |
|- ( ( ph /\ -. sup ( A , RR* , < ) = +oo ) -> ( sup ( A , RR* , < ) = +oo <-> -. sup ( A , RR* , < ) < +oo ) ) |
| 103 |
99 102
|
mtbid |
|- ( ( ph /\ -. sup ( A , RR* , < ) = +oo ) -> -. -. sup ( A , RR* , < ) < +oo ) |
| 104 |
|
notnotr |
|- ( -. -. sup ( A , RR* , < ) < +oo -> sup ( A , RR* , < ) < +oo ) |
| 105 |
103 104
|
syl |
|- ( ( ph /\ -. sup ( A , RR* , < ) = +oo ) -> sup ( A , RR* , < ) < +oo ) |
| 106 |
105
|
adantr |
|- ( ( ( ph /\ -. sup ( A , RR* , < ) = +oo ) /\ -. A = (/) ) -> sup ( A , RR* , < ) < +oo ) |
| 107 |
98 106
|
jca |
|- ( ( ( ph /\ -. sup ( A , RR* , < ) = +oo ) /\ -. A = (/) ) -> ( -oo < sup ( A , RR* , < ) /\ sup ( A , RR* , < ) < +oo ) ) |
| 108 |
92 7
|
syl |
|- ( ( ( ph /\ -. sup ( A , RR* , < ) = +oo ) /\ -. A = (/) ) -> sup ( A , RR* , < ) e. RR* ) |
| 109 |
|
xrrebnd |
|- ( sup ( A , RR* , < ) e. RR* -> ( sup ( A , RR* , < ) e. RR <-> ( -oo < sup ( A , RR* , < ) /\ sup ( A , RR* , < ) < +oo ) ) ) |
| 110 |
108 109
|
syl |
|- ( ( ( ph /\ -. sup ( A , RR* , < ) = +oo ) /\ -. A = (/) ) -> ( sup ( A , RR* , < ) e. RR <-> ( -oo < sup ( A , RR* , < ) /\ sup ( A , RR* , < ) < +oo ) ) ) |
| 111 |
107 110
|
mpbird |
|- ( ( ( ph /\ -. sup ( A , RR* , < ) = +oo ) /\ -. A = (/) ) -> sup ( A , RR* , < ) e. RR ) |
| 112 |
|
nfv |
|- F/ w ( ph /\ sup ( A , RR* , < ) e. RR ) |
| 113 |
2
|
adantr |
|- ( ( ph /\ sup ( A , RR* , < ) e. RR ) -> B C_ RR* ) |
| 114 |
|
simpr |
|- ( ( ph /\ sup ( A , RR* , < ) e. RR ) -> sup ( A , RR* , < ) e. RR ) |
| 115 |
114
|
adantr |
|- ( ( ( ph /\ sup ( A , RR* , < ) e. RR ) /\ w e. RR+ ) -> sup ( A , RR* , < ) e. RR ) |
| 116 |
|
simpr |
|- ( ( ( ph /\ sup ( A , RR* , < ) e. RR ) /\ w e. RR+ ) -> w e. RR+ ) |
| 117 |
116
|
rphalfcld |
|- ( ( ( ph /\ sup ( A , RR* , < ) e. RR ) /\ w e. RR+ ) -> ( w / 2 ) e. RR+ ) |
| 118 |
115 117
|
ltsubrpd |
|- ( ( ( ph /\ sup ( A , RR* , < ) e. RR ) /\ w e. RR+ ) -> ( sup ( A , RR* , < ) - ( w / 2 ) ) < sup ( A , RR* , < ) ) |
| 119 |
5
|
ad2antrr |
|- ( ( ( ph /\ sup ( A , RR* , < ) e. RR ) /\ w e. RR+ ) -> A C_ RR* ) |
| 120 |
|
rpre |
|- ( w e. RR+ -> w e. RR ) |
| 121 |
|
2re |
|- 2 e. RR |
| 122 |
121
|
a1i |
|- ( w e. RR+ -> 2 e. RR ) |
| 123 |
|
2ne0 |
|- 2 =/= 0 |
| 124 |
123
|
a1i |
|- ( w e. RR+ -> 2 =/= 0 ) |
| 125 |
120 122 124
|
redivcld |
|- ( w e. RR+ -> ( w / 2 ) e. RR ) |
| 126 |
125
|
adantl |
|- ( ( ( ph /\ sup ( A , RR* , < ) e. RR ) /\ w e. RR+ ) -> ( w / 2 ) e. RR ) |
| 127 |
115 126
|
resubcld |
|- ( ( ( ph /\ sup ( A , RR* , < ) e. RR ) /\ w e. RR+ ) -> ( sup ( A , RR* , < ) - ( w / 2 ) ) e. RR ) |
| 128 |
4 127
|
sselid |
|- ( ( ( ph /\ sup ( A , RR* , < ) e. RR ) /\ w e. RR+ ) -> ( sup ( A , RR* , < ) - ( w / 2 ) ) e. RR* ) |
| 129 |
|
supxrlub |
|- ( ( A C_ RR* /\ ( sup ( A , RR* , < ) - ( w / 2 ) ) e. RR* ) -> ( ( sup ( A , RR* , < ) - ( w / 2 ) ) < sup ( A , RR* , < ) <-> E. x e. A ( sup ( A , RR* , < ) - ( w / 2 ) ) < x ) ) |
| 130 |
119 128 129
|
syl2anc |
|- ( ( ( ph /\ sup ( A , RR* , < ) e. RR ) /\ w e. RR+ ) -> ( ( sup ( A , RR* , < ) - ( w / 2 ) ) < sup ( A , RR* , < ) <-> E. x e. A ( sup ( A , RR* , < ) - ( w / 2 ) ) < x ) ) |
| 131 |
118 130
|
mpbid |
|- ( ( ( ph /\ sup ( A , RR* , < ) e. RR ) /\ w e. RR+ ) -> E. x e. A ( sup ( A , RR* , < ) - ( w / 2 ) ) < x ) |
| 132 |
|
rphalfcl |
|- ( w e. RR+ -> ( w / 2 ) e. RR+ ) |
| 133 |
132
|
3ad2ant2 |
|- ( ( ph /\ w e. RR+ /\ x e. A ) -> ( w / 2 ) e. RR+ ) |
| 134 |
24
|
3adant2 |
|- ( ( ph /\ w e. RR+ /\ x e. A ) -> A. y e. RR+ E. z e. B ( x - y ) < z ) |
| 135 |
|
oveq2 |
|- ( y = ( w / 2 ) -> ( x - y ) = ( x - ( w / 2 ) ) ) |
| 136 |
135
|
breq1d |
|- ( y = ( w / 2 ) -> ( ( x - y ) < z <-> ( x - ( w / 2 ) ) < z ) ) |
| 137 |
136
|
rexbidv |
|- ( y = ( w / 2 ) -> ( E. z e. B ( x - y ) < z <-> E. z e. B ( x - ( w / 2 ) ) < z ) ) |
| 138 |
137
|
rspcva |
|- ( ( ( w / 2 ) e. RR+ /\ A. y e. RR+ E. z e. B ( x - y ) < z ) -> E. z e. B ( x - ( w / 2 ) ) < z ) |
| 139 |
133 134 138
|
syl2anc |
|- ( ( ph /\ w e. RR+ /\ x e. A ) -> E. z e. B ( x - ( w / 2 ) ) < z ) |
| 140 |
139
|
ad5ant134 |
|- ( ( ( ( ( ph /\ sup ( A , RR* , < ) e. RR ) /\ w e. RR+ ) /\ x e. A ) /\ ( sup ( A , RR* , < ) - ( w / 2 ) ) < x ) -> E. z e. B ( x - ( w / 2 ) ) < z ) |
| 141 |
|
recn |
|- ( sup ( A , RR* , < ) e. RR -> sup ( A , RR* , < ) e. CC ) |
| 142 |
141
|
adantr |
|- ( ( sup ( A , RR* , < ) e. RR /\ w e. RR+ ) -> sup ( A , RR* , < ) e. CC ) |
| 143 |
120
|
recnd |
|- ( w e. RR+ -> w e. CC ) |
| 144 |
143
|
adantl |
|- ( ( sup ( A , RR* , < ) e. RR /\ w e. RR+ ) -> w e. CC ) |
| 145 |
144
|
halfcld |
|- ( ( sup ( A , RR* , < ) e. RR /\ w e. RR+ ) -> ( w / 2 ) e. CC ) |
| 146 |
142 145 145
|
subsub4d |
|- ( ( sup ( A , RR* , < ) e. RR /\ w e. RR+ ) -> ( ( sup ( A , RR* , < ) - ( w / 2 ) ) - ( w / 2 ) ) = ( sup ( A , RR* , < ) - ( ( w / 2 ) + ( w / 2 ) ) ) ) |
| 147 |
143
|
2halvesd |
|- ( w e. RR+ -> ( ( w / 2 ) + ( w / 2 ) ) = w ) |
| 148 |
147
|
oveq2d |
|- ( w e. RR+ -> ( sup ( A , RR* , < ) - ( ( w / 2 ) + ( w / 2 ) ) ) = ( sup ( A , RR* , < ) - w ) ) |
| 149 |
148
|
adantl |
|- ( ( sup ( A , RR* , < ) e. RR /\ w e. RR+ ) -> ( sup ( A , RR* , < ) - ( ( w / 2 ) + ( w / 2 ) ) ) = ( sup ( A , RR* , < ) - w ) ) |
| 150 |
146 149
|
eqtr2d |
|- ( ( sup ( A , RR* , < ) e. RR /\ w e. RR+ ) -> ( sup ( A , RR* , < ) - w ) = ( ( sup ( A , RR* , < ) - ( w / 2 ) ) - ( w / 2 ) ) ) |
| 151 |
150
|
adantll |
|- ( ( ( ph /\ sup ( A , RR* , < ) e. RR ) /\ w e. RR+ ) -> ( sup ( A , RR* , < ) - w ) = ( ( sup ( A , RR* , < ) - ( w / 2 ) ) - ( w / 2 ) ) ) |
| 152 |
151
|
adantr |
|- ( ( ( ( ph /\ sup ( A , RR* , < ) e. RR ) /\ w e. RR+ ) /\ x e. A ) -> ( sup ( A , RR* , < ) - w ) = ( ( sup ( A , RR* , < ) - ( w / 2 ) ) - ( w / 2 ) ) ) |
| 153 |
152
|
ad3antrrr |
|- ( ( ( ( ( ( ( ph /\ sup ( A , RR* , < ) e. RR ) /\ w e. RR+ ) /\ x e. A ) /\ ( sup ( A , RR* , < ) - ( w / 2 ) ) < x ) /\ z e. B ) /\ ( x - ( w / 2 ) ) < z ) -> ( sup ( A , RR* , < ) - w ) = ( ( sup ( A , RR* , < ) - ( w / 2 ) ) - ( w / 2 ) ) ) |
| 154 |
127 126
|
resubcld |
|- ( ( ( ph /\ sup ( A , RR* , < ) e. RR ) /\ w e. RR+ ) -> ( ( sup ( A , RR* , < ) - ( w / 2 ) ) - ( w / 2 ) ) e. RR ) |
| 155 |
154
|
adantr |
|- ( ( ( ( ph /\ sup ( A , RR* , < ) e. RR ) /\ w e. RR+ ) /\ x e. A ) -> ( ( sup ( A , RR* , < ) - ( w / 2 ) ) - ( w / 2 ) ) e. RR ) |
| 156 |
155
|
ad3antrrr |
|- ( ( ( ( ( ( ( ph /\ sup ( A , RR* , < ) e. RR ) /\ w e. RR+ ) /\ x e. A ) /\ ( sup ( A , RR* , < ) - ( w / 2 ) ) < x ) /\ z e. B ) /\ ( x - ( w / 2 ) ) < z ) -> ( ( sup ( A , RR* , < ) - ( w / 2 ) ) - ( w / 2 ) ) e. RR ) |
| 157 |
4 156
|
sselid |
|- ( ( ( ( ( ( ( ph /\ sup ( A , RR* , < ) e. RR ) /\ w e. RR+ ) /\ x e. A ) /\ ( sup ( A , RR* , < ) - ( w / 2 ) ) < x ) /\ z e. B ) /\ ( x - ( w / 2 ) ) < z ) -> ( ( sup ( A , RR* , < ) - ( w / 2 ) ) - ( w / 2 ) ) e. RR* ) |
| 158 |
120 49
|
sylanl2 |
|- ( ( ( ph /\ w e. RR+ ) /\ x e. A ) -> x e. RR ) |
| 159 |
125
|
ad2antlr |
|- ( ( ( ph /\ w e. RR+ ) /\ x e. A ) -> ( w / 2 ) e. RR ) |
| 160 |
158 159
|
resubcld |
|- ( ( ( ph /\ w e. RR+ ) /\ x e. A ) -> ( x - ( w / 2 ) ) e. RR ) |
| 161 |
160
|
adantllr |
|- ( ( ( ( ph /\ sup ( A , RR* , < ) e. RR ) /\ w e. RR+ ) /\ x e. A ) -> ( x - ( w / 2 ) ) e. RR ) |
| 162 |
161
|
ad3antrrr |
|- ( ( ( ( ( ( ( ph /\ sup ( A , RR* , < ) e. RR ) /\ w e. RR+ ) /\ x e. A ) /\ ( sup ( A , RR* , < ) - ( w / 2 ) ) < x ) /\ z e. B ) /\ ( x - ( w / 2 ) ) < z ) -> ( x - ( w / 2 ) ) e. RR ) |
| 163 |
4 162
|
sselid |
|- ( ( ( ( ( ( ( ph /\ sup ( A , RR* , < ) e. RR ) /\ w e. RR+ ) /\ x e. A ) /\ ( sup ( A , RR* , < ) - ( w / 2 ) ) < x ) /\ z e. B ) /\ ( x - ( w / 2 ) ) < z ) -> ( x - ( w / 2 ) ) e. RR* ) |
| 164 |
|
simp-6l |
|- ( ( ( ( ( ( ( ph /\ sup ( A , RR* , < ) e. RR ) /\ w e. RR+ ) /\ x e. A ) /\ ( sup ( A , RR* , < ) - ( w / 2 ) ) < x ) /\ z e. B ) /\ ( x - ( w / 2 ) ) < z ) -> ph ) |
| 165 |
|
simplr |
|- ( ( ( ( ( ( ( ph /\ sup ( A , RR* , < ) e. RR ) /\ w e. RR+ ) /\ x e. A ) /\ ( sup ( A , RR* , < ) - ( w / 2 ) ) < x ) /\ z e. B ) /\ ( x - ( w / 2 ) ) < z ) -> z e. B ) |
| 166 |
164 165 42
|
syl2anc |
|- ( ( ( ( ( ( ( ph /\ sup ( A , RR* , < ) e. RR ) /\ w e. RR+ ) /\ x e. A ) /\ ( sup ( A , RR* , < ) - ( w / 2 ) ) < x ) /\ z e. B ) /\ ( x - ( w / 2 ) ) < z ) -> z e. RR* ) |
| 167 |
|
simp-6r |
|- ( ( ( ( ( ( ( ph /\ sup ( A , RR* , < ) e. RR ) /\ w e. RR+ ) /\ x e. A ) /\ ( sup ( A , RR* , < ) - ( w / 2 ) ) < x ) /\ z e. B ) /\ ( x - ( w / 2 ) ) < z ) -> sup ( A , RR* , < ) e. RR ) |
| 168 |
120
|
ad5antlr |
|- ( ( ( ( ( ( ( ph /\ sup ( A , RR* , < ) e. RR ) /\ w e. RR+ ) /\ x e. A ) /\ ( sup ( A , RR* , < ) - ( w / 2 ) ) < x ) /\ z e. B ) /\ ( x - ( w / 2 ) ) < z ) -> w e. RR ) |
| 169 |
168
|
rehalfcld |
|- ( ( ( ( ( ( ( ph /\ sup ( A , RR* , < ) e. RR ) /\ w e. RR+ ) /\ x e. A ) /\ ( sup ( A , RR* , < ) - ( w / 2 ) ) < x ) /\ z e. B ) /\ ( x - ( w / 2 ) ) < z ) -> ( w / 2 ) e. RR ) |
| 170 |
167 169
|
resubcld |
|- ( ( ( ( ( ( ( ph /\ sup ( A , RR* , < ) e. RR ) /\ w e. RR+ ) /\ x e. A ) /\ ( sup ( A , RR* , < ) - ( w / 2 ) ) < x ) /\ z e. B ) /\ ( x - ( w / 2 ) ) < z ) -> ( sup ( A , RR* , < ) - ( w / 2 ) ) e. RR ) |
| 171 |
|
simp-4r |
|- ( ( ( ( ( ( ( ph /\ sup ( A , RR* , < ) e. RR ) /\ w e. RR+ ) /\ x e. A ) /\ ( sup ( A , RR* , < ) - ( w / 2 ) ) < x ) /\ z e. B ) /\ ( x - ( w / 2 ) ) < z ) -> x e. A ) |
| 172 |
164 171 35
|
syl2anc |
|- ( ( ( ( ( ( ( ph /\ sup ( A , RR* , < ) e. RR ) /\ w e. RR+ ) /\ x e. A ) /\ ( sup ( A , RR* , < ) - ( w / 2 ) ) < x ) /\ z e. B ) /\ ( x - ( w / 2 ) ) < z ) -> x e. RR ) |
| 173 |
|
simpllr |
|- ( ( ( ( ( ( ( ph /\ sup ( A , RR* , < ) e. RR ) /\ w e. RR+ ) /\ x e. A ) /\ ( sup ( A , RR* , < ) - ( w / 2 ) ) < x ) /\ z e. B ) /\ ( x - ( w / 2 ) ) < z ) -> ( sup ( A , RR* , < ) - ( w / 2 ) ) < x ) |
| 174 |
170 172 169 173
|
ltsub1dd |
|- ( ( ( ( ( ( ( ph /\ sup ( A , RR* , < ) e. RR ) /\ w e. RR+ ) /\ x e. A ) /\ ( sup ( A , RR* , < ) - ( w / 2 ) ) < x ) /\ z e. B ) /\ ( x - ( w / 2 ) ) < z ) -> ( ( sup ( A , RR* , < ) - ( w / 2 ) ) - ( w / 2 ) ) < ( x - ( w / 2 ) ) ) |
| 175 |
|
simpr |
|- ( ( ( ( ( ( ( ph /\ sup ( A , RR* , < ) e. RR ) /\ w e. RR+ ) /\ x e. A ) /\ ( sup ( A , RR* , < ) - ( w / 2 ) ) < x ) /\ z e. B ) /\ ( x - ( w / 2 ) ) < z ) -> ( x - ( w / 2 ) ) < z ) |
| 176 |
157 163 166 174 175
|
xrlttrd |
|- ( ( ( ( ( ( ( ph /\ sup ( A , RR* , < ) e. RR ) /\ w e. RR+ ) /\ x e. A ) /\ ( sup ( A , RR* , < ) - ( w / 2 ) ) < x ) /\ z e. B ) /\ ( x - ( w / 2 ) ) < z ) -> ( ( sup ( A , RR* , < ) - ( w / 2 ) ) - ( w / 2 ) ) < z ) |
| 177 |
153 176
|
eqbrtrd |
|- ( ( ( ( ( ( ( ph /\ sup ( A , RR* , < ) e. RR ) /\ w e. RR+ ) /\ x e. A ) /\ ( sup ( A , RR* , < ) - ( w / 2 ) ) < x ) /\ z e. B ) /\ ( x - ( w / 2 ) ) < z ) -> ( sup ( A , RR* , < ) - w ) < z ) |
| 178 |
177
|
ex |
|- ( ( ( ( ( ( ph /\ sup ( A , RR* , < ) e. RR ) /\ w e. RR+ ) /\ x e. A ) /\ ( sup ( A , RR* , < ) - ( w / 2 ) ) < x ) /\ z e. B ) -> ( ( x - ( w / 2 ) ) < z -> ( sup ( A , RR* , < ) - w ) < z ) ) |
| 179 |
178
|
reximdva |
|- ( ( ( ( ( ph /\ sup ( A , RR* , < ) e. RR ) /\ w e. RR+ ) /\ x e. A ) /\ ( sup ( A , RR* , < ) - ( w / 2 ) ) < x ) -> ( E. z e. B ( x - ( w / 2 ) ) < z -> E. z e. B ( sup ( A , RR* , < ) - w ) < z ) ) |
| 180 |
140 179
|
mpd |
|- ( ( ( ( ( ph /\ sup ( A , RR* , < ) e. RR ) /\ w e. RR+ ) /\ x e. A ) /\ ( sup ( A , RR* , < ) - ( w / 2 ) ) < x ) -> E. z e. B ( sup ( A , RR* , < ) - w ) < z ) |
| 181 |
180
|
rexlimdva2 |
|- ( ( ( ph /\ sup ( A , RR* , < ) e. RR ) /\ w e. RR+ ) -> ( E. x e. A ( sup ( A , RR* , < ) - ( w / 2 ) ) < x -> E. z e. B ( sup ( A , RR* , < ) - w ) < z ) ) |
| 182 |
131 181
|
mpd |
|- ( ( ( ph /\ sup ( A , RR* , < ) e. RR ) /\ w e. RR+ ) -> E. z e. B ( sup ( A , RR* , < ) - w ) < z ) |
| 183 |
112 113 114 182
|
supxrgere |
|- ( ( ph /\ sup ( A , RR* , < ) e. RR ) -> sup ( A , RR* , < ) <_ sup ( B , RR* , < ) ) |
| 184 |
92 111 183
|
syl2anc |
|- ( ( ( ph /\ -. sup ( A , RR* , < ) = +oo ) /\ -. A = (/) ) -> sup ( A , RR* , < ) <_ sup ( B , RR* , < ) ) |
| 185 |
91 184
|
pm2.61dan |
|- ( ( ph /\ -. sup ( A , RR* , < ) = +oo ) -> sup ( A , RR* , < ) <_ sup ( B , RR* , < ) ) |
| 186 |
79 185
|
pm2.61dan |
|- ( ph -> sup ( A , RR* , < ) <_ sup ( B , RR* , < ) ) |