Metamath Proof Explorer


Theorem 01sqrexlem7

Description: Lemma for 01sqrex . (Contributed by Mario Carneiro, 10-Jul-2013) (Proof shortened by AV, 9-Jul-2022)

Ref Expression
Hypotheses 01sqrexlem1.1 S=x+|x2A
01sqrexlem1.2 B=supS<
01sqrexlem5.3 T=y|aSbSy=ab
Assertion 01sqrexlem7 A+A1B2=A

Proof

Step Hyp Ref Expression
1 01sqrexlem1.1 S=x+|x2A
2 01sqrexlem1.2 B=supS<
3 01sqrexlem5.3 T=y|aSbSy=ab
4 1 2 3 01sqrexlem6 A+A1B2A
5 1 2 01sqrexlem3 A+A1SSyzSzy
6 5 adantr A+A1B2<ASSyzSzy
7 1 2 01sqrexlem4 A+A1B+B1
8 7 adantr A+A1B2<AB+B1
9 8 simpld A+A1B2<AB+
10 rpre A+A
11 10 adantr A+A1A
12 rpre B+B
13 12 adantr B+B1B
14 7 13 syl A+A1B
15 14 resqcld A+A1B2
16 11 15 resubcld A+A1AB2
17 16 adantr A+A1B2<AAB2
18 15 11 posdifd A+A1B2<A0<AB2
19 18 biimpa A+A1B2<A0<AB2
20 17 19 elrpd A+A1B2<AAB2+
21 3rp 3+
22 rpdivcl AB2+3+AB23+
23 20 21 22 sylancl A+A1B2<AAB23+
24 9 23 rpaddcld A+A1B2<AB+AB23+
25 14 adantr A+A1B2<AB
26 25 recnd A+A1B2<AB
27 3nn 3
28 nndivre AB23AB23
29 16 27 28 sylancl A+A1AB23
30 29 adantr A+A1B2<AAB23
31 30 recnd A+A1B2<AAB23
32 binom2 BAB23B+AB232=B2+2BAB23+AB232
33 26 31 32 syl2anc A+A1B2<AB+AB232=B2+2BAB23+AB232
34 15 adantr A+A1B2<AB2
35 34 recnd A+A1B2<AB2
36 2re 2
37 25 30 remulcld A+A1B2<ABAB23
38 remulcl 2BAB232BAB23
39 36 37 38 sylancr A+A1B2<A2BAB23
40 39 recnd A+A1B2<A2BAB23
41 30 resqcld A+A1B2<AAB232
42 41 recnd A+A1B2<AAB232
43 35 40 42 addassd A+A1B2<AB2+2BAB23+AB232=B2+2BAB23+AB232
44 33 43 eqtrd A+A1B2<AB+AB232=B2+2BAB23+AB232
45 2cn 2
46 mulass 2BAB232BAB23=2BAB23
47 45 26 31 46 mp3an2i A+A1B2<A2BAB23=2BAB23
48 47 eqcomd A+A1B2<A2BAB23=2BAB23
49 31 sqvald A+A1B2<AAB232=AB23AB23
50 48 49 oveq12d A+A1B2<A2BAB23+AB232=2BAB23+AB23AB23
51 remulcl 2B2B
52 36 25 51 sylancr A+A1B2<A2B
53 52 recnd A+A1B2<A2B
54 53 31 31 adddird A+A1B2<A2B+AB23AB23=2BAB23+AB23AB23
55 50 54 eqtr4d A+A1B2<A2BAB23+AB232=2B+AB23AB23
56 7 simprd A+A1B1
57 1red A+A11
58 2rp 2+
59 58 a1i A+A12+
60 14 57 59 lemul2d A+A1B12B21
61 56 60 mpbid A+A12B21
62 61 adantr A+A1B2<A2B21
63 2t1e2 21=2
64 62 63 breqtrdi A+A1B2<A2B2
65 11 adantr A+A1B2<AA
66 1red A+A1B2<A1
67 25 sqge0d A+A1B2<A0B2
68 65 34 addge01d A+A1B2<A0B2AA+B2
69 67 68 mpbid A+A1B2<AAA+B2
70 65 34 65 lesubaddd A+A1B2<AAB2AAA+B2
71 69 70 mpbird A+A1B2<AAB2A
72 simplr A+A1B2<AA1
73 17 65 66 71 72 letrd A+A1B2<AAB21
74 1le3 13
75 1re 1
76 3re 3
77 letr AB213AB2113AB23
78 75 76 77 mp3an23 AB2AB2113AB23
79 17 78 syl A+A1B2<AAB2113AB23
80 74 79 mpan2i A+A1B2<AAB21AB23
81 73 80 mpd A+A1B2<AAB23
82 3t1e3 31=3
83 81 82 breqtrrdi A+A1B2<AAB231
84 3pos 0<3
85 ledivmul AB2130<3AB231AB231
86 75 85 mp3an2 AB230<3AB231AB231
87 76 84 86 mpanr12 AB2AB231AB231
88 17 87 syl A+A1B2<AAB231AB231
89 83 88 mpbird A+A1B2<AAB231
90 le2add 2BAB23212B2AB2312B+AB232+1
91 36 75 90 mpanr12 2BAB232B2AB2312B+AB232+1
92 52 30 91 syl2anc A+A1B2<A2B2AB2312B+AB232+1
93 64 89 92 mp2and A+A1B2<A2B+AB232+1
94 df-3 3=2+1
95 93 94 breqtrrdi A+A1B2<A2B+AB233
96 52 30 readdcld A+A1B2<A2B+AB23
97 76 a1i A+A1B2<A3
98 96 97 23 lemul1d A+A1B2<A2B+AB2332B+AB23AB233AB23
99 95 98 mpbid A+A1B2<A2B+AB23AB233AB23
100 17 recnd A+A1B2<AAB2
101 3cn 3
102 3ne0 30
103 divcan2 AB23303AB23=AB2
104 101 102 103 mp3an23 AB23AB23=AB2
105 100 104 syl A+A1B2<A3AB23=AB2
106 99 105 breqtrd A+A1B2<A2B+AB23AB23AB2
107 55 106 eqbrtrd A+A1B2<A2BAB23+AB232AB2
108 39 41 readdcld A+A1B2<A2BAB23+AB232
109 34 108 65 leaddsub2d A+A1B2<AB2+2BAB23+AB232A2BAB23+AB232AB2
110 107 109 mpbird A+A1B2<AB2+2BAB23+AB232A
111 44 110 eqbrtrd A+A1B2<AB+AB232A
112 oveq1 y=B+AB23y2=B+AB232
113 112 breq1d y=B+AB23y2AB+AB232A
114 oveq1 x=yx2=y2
115 114 breq1d x=yx2Ay2A
116 115 cbvrabv x+|x2A=y+|y2A
117 1 116 eqtri S=y+|y2A
118 113 117 elrab2 B+AB23SB+AB23+B+AB232A
119 24 111 118 sylanbrc A+A1B2<AB+AB23S
120 suprub SSyzSzyB+AB23SB+AB23supS<
121 120 2 breqtrrdi SSyzSzyB+AB23SB+AB23B
122 6 119 121 syl2anc A+A1B2<AB+AB23B
123 23 rpgt0d A+A1B2<A0<AB23
124 29 14 ltaddposd A+A10<AB23B<B+AB23
125 14 29 readdcld A+A1B+AB23
126 14 125 ltnled A+A1B<B+AB23¬B+AB23B
127 124 126 bitrd A+A10<AB23¬B+AB23B
128 127 biimpa A+A10<AB23¬B+AB23B
129 123 128 syldan A+A1B2<A¬B+AB23B
130 122 129 pm2.65da A+A1¬B2<A
131 15 11 eqleltd A+A1B2=AB2A¬B2<A
132 4 130 131 mpbir2and A+A1B2=A