Step |
Hyp |
Ref |
Expression |
1 |
|
1arithufd.b |
|
2 |
|
1arithufd.0 |
|
3 |
|
1arithufd.u |
|
4 |
|
1arithufd.p |
|
5 |
|
1arithufd.m |
|
6 |
|
1arithufd.r |
|
7 |
|
1arithufdlem.2 |
|
8 |
|
1arithufdlem.s |
|
9 |
|
1arithufdlem2.1 |
|
10 |
|
1arithufdlem2.2 |
|
11 |
|
1arithufdlem2.3 |
|
12 |
|
eqeq1 |
|
13 |
12
|
rexbidv |
|
14 |
6
|
ufdidom |
|
15 |
14
|
idomringd |
|
16 |
8
|
ssrab3 |
|
17 |
16 10
|
sselid |
|
18 |
16 11
|
sselid |
|
19 |
1 9 15 17 18
|
ringcld |
|
20 |
|
oveq2 |
|
21 |
20
|
eqeq2d |
|
22 |
|
ccatcl |
|
23 |
22
|
ad5ant24 |
|
24 |
|
simpllr |
|
25 |
|
simpr |
|
26 |
24 25
|
oveq12d |
|
27 |
5
|
ringmgp |
|
28 |
15 27
|
syl |
|
29 |
28
|
ad4antr |
|
30 |
6
|
adantr |
|
31 |
|
simpr |
|
32 |
1 4 30 31
|
rprmcl |
|
33 |
32
|
ex |
|
34 |
33
|
ssrdv |
|
35 |
|
sswrd |
|
36 |
34 35
|
syl |
|
37 |
36
|
ad4antr |
|
38 |
|
simp-4r |
|
39 |
37 38
|
sseldd |
|
40 |
|
simplr |
|
41 |
37 40
|
sseldd |
|
42 |
5 1
|
mgpbas |
|
43 |
5 9
|
mgpplusg |
|
44 |
42 43
|
gsumccat |
|
45 |
29 39 41 44
|
syl3anc |
|
46 |
26 45
|
eqtr4d |
|
47 |
21 23 46
|
rspcedvdw |
|
48 |
11 8
|
eleqtrdi |
|
49 |
|
oveq2 |
|
50 |
49
|
eqeq2d |
|
51 |
50
|
cbvrexvw |
|
52 |
|
eqeq1 |
|
53 |
52
|
rexbidv |
|
54 |
51 53
|
bitrid |
|
55 |
54
|
elrab3 |
|
56 |
55
|
biimpa |
|
57 |
18 48 56
|
syl2anc |
|
58 |
57
|
ad2antrr |
|
59 |
47 58
|
r19.29a |
|
60 |
10 8
|
eleqtrdi |
|
61 |
|
oveq2 |
|
62 |
61
|
eqeq2d |
|
63 |
62
|
cbvrexvw |
|
64 |
|
eqeq1 |
|
65 |
64
|
rexbidv |
|
66 |
63 65
|
bitrid |
|
67 |
66
|
elrab3 |
|
68 |
67
|
biimpa |
|
69 |
17 60 68
|
syl2anc |
|
70 |
59 69
|
r19.29a |
|
71 |
13 19 70
|
elrabd |
|
72 |
71 8
|
eleqtrrdi |
|