Metamath Proof Explorer


Theorem 1arithufdlem2

Description: Lemma for 1arithufd . The set S of elements which can be written as a product of primes is multiplicatively closed. (Contributed by Thierry Arnoux, 3-Jun-2025)

Ref Expression
Hypotheses 1arithufd.b B = Base R
1arithufd.0 0 ˙ = 0 R
1arithufd.u U = Unit R
1arithufd.p P = RPrime R
1arithufd.m M = mulGrp R
1arithufd.r φ R UFD
1arithufdlem.2 φ ¬ R DivRing
1arithufdlem.s S = x B | f Word P x = M f
1arithufdlem2.1 · ˙ = R
1arithufdlem2.2 φ X S
1arithufdlem2.3 φ Y S
Assertion 1arithufdlem2 φ X · ˙ Y S

Proof

Step Hyp Ref Expression
1 1arithufd.b B = Base R
2 1arithufd.0 0 ˙ = 0 R
3 1arithufd.u U = Unit R
4 1arithufd.p P = RPrime R
5 1arithufd.m M = mulGrp R
6 1arithufd.r φ R UFD
7 1arithufdlem.2 φ ¬ R DivRing
8 1arithufdlem.s S = x B | f Word P x = M f
9 1arithufdlem2.1 · ˙ = R
10 1arithufdlem2.2 φ X S
11 1arithufdlem2.3 φ Y S
12 eqeq1 x = X · ˙ Y x = M f X · ˙ Y = M f
13 12 rexbidv x = X · ˙ Y f Word P x = M f f Word P X · ˙ Y = M f
14 6 ufdidom φ R IDomn
15 14 idomringd φ R Ring
16 8 ssrab3 S B
17 16 10 sselid φ X B
18 16 11 sselid φ Y B
19 1 9 15 17 18 ringcld φ X · ˙ Y B
20 oveq2 f = g ++ h M f = M g ++ h
21 20 eqeq2d f = g ++ h X · ˙ Y = M f X · ˙ Y = M g ++ h
22 ccatcl g Word P h Word P g ++ h Word P
23 22 ad5ant24 φ g Word P X = M g h Word P Y = M h g ++ h Word P
24 simpllr φ g Word P X = M g h Word P Y = M h X = M g
25 simpr φ g Word P X = M g h Word P Y = M h Y = M h
26 24 25 oveq12d φ g Word P X = M g h Word P Y = M h X · ˙ Y = M g · ˙ M h
27 5 ringmgp R Ring M Mnd
28 15 27 syl φ M Mnd
29 28 ad4antr φ g Word P X = M g h Word P Y = M h M Mnd
30 6 adantr φ x P R UFD
31 simpr φ x P x P
32 1 4 30 31 rprmcl φ x P x B
33 32 ex φ x P x B
34 33 ssrdv φ P B
35 sswrd P B Word P Word B
36 34 35 syl φ Word P Word B
37 36 ad4antr φ g Word P X = M g h Word P Y = M h Word P Word B
38 simp-4r φ g Word P X = M g h Word P Y = M h g Word P
39 37 38 sseldd φ g Word P X = M g h Word P Y = M h g Word B
40 simplr φ g Word P X = M g h Word P Y = M h h Word P
41 37 40 sseldd φ g Word P X = M g h Word P Y = M h h Word B
42 5 1 mgpbas B = Base M
43 5 9 mgpplusg · ˙ = + M
44 42 43 gsumccat M Mnd g Word B h Word B M g ++ h = M g · ˙ M h
45 29 39 41 44 syl3anc φ g Word P X = M g h Word P Y = M h M g ++ h = M g · ˙ M h
46 26 45 eqtr4d φ g Word P X = M g h Word P Y = M h X · ˙ Y = M g ++ h
47 21 23 46 rspcedvdw φ g Word P X = M g h Word P Y = M h f Word P X · ˙ Y = M f
48 11 8 eleqtrdi φ Y x B | f Word P x = M f
49 oveq2 f = h M f = M h
50 49 eqeq2d f = h x = M f x = M h
51 50 cbvrexvw f Word P x = M f h Word P x = M h
52 eqeq1 x = Y x = M h Y = M h
53 52 rexbidv x = Y h Word P x = M h h Word P Y = M h
54 51 53 bitrid x = Y f Word P x = M f h Word P Y = M h
55 54 elrab3 Y B Y x B | f Word P x = M f h Word P Y = M h
56 55 biimpa Y B Y x B | f Word P x = M f h Word P Y = M h
57 18 48 56 syl2anc φ h Word P Y = M h
58 57 ad2antrr φ g Word P X = M g h Word P Y = M h
59 47 58 r19.29a φ g Word P X = M g f Word P X · ˙ Y = M f
60 10 8 eleqtrdi φ X x B | f Word P x = M f
61 oveq2 f = g M f = M g
62 61 eqeq2d f = g x = M f x = M g
63 62 cbvrexvw f Word P x = M f g Word P x = M g
64 eqeq1 x = X x = M g X = M g
65 64 rexbidv x = X g Word P x = M g g Word P X = M g
66 63 65 bitrid x = X f Word P x = M f g Word P X = M g
67 66 elrab3 X B X x B | f Word P x = M f g Word P X = M g
68 67 biimpa X B X x B | f Word P x = M f g Word P X = M g
69 17 60 68 syl2anc φ g Word P X = M g
70 59 69 r19.29a φ f Word P X · ˙ Y = M f
71 13 19 70 elrabd φ X · ˙ Y x B | f Word P x = M f
72 71 8 eleqtrrdi φ X · ˙ Y S