Metamath Proof Explorer


Theorem 1stmbfm

Description: The first projection map is measurable with regard to the product sigma-algebra. (Contributed by Thierry Arnoux, 3-Jun-2017)

Ref Expression
Hypotheses 1stmbfm.1 φSransigAlgebra
1stmbfm.2 φTransigAlgebra
Assertion 1stmbfm φ1stS×TS×sTMblFnμS

Proof

Step Hyp Ref Expression
1 1stmbfm.1 φSransigAlgebra
2 1stmbfm.2 φTransigAlgebra
3 f1stres 1stS×T:S×TS
4 sxuni SransigAlgebraTransigAlgebraS×T=S×sT
5 1 2 4 syl2anc φS×T=S×sT
6 5 feq2d φ1stS×T:S×TS1stS×T:S×sTS
7 3 6 mpbii φ1stS×T:S×sTS
8 unielsiga SransigAlgebraSS
9 1 8 syl φSS
10 sxsiga SransigAlgebraTransigAlgebraS×sTransigAlgebra
11 1 2 10 syl2anc φS×sTransigAlgebra
12 unielsiga S×sTransigAlgebraS×sTS×sT
13 11 12 syl φS×sTS×sT
14 9 13 elmapd φ1stS×TSS×sT1stS×T:S×sTS
15 7 14 mpbird φ1stS×TSS×sT
16 ffn 1stS×T:S×TS1stS×TFnS×T
17 elpreima 1stS×TFnS×Tz1stS×T-1azS×T1stS×Tza
18 3 16 17 mp2b z1stS×T-1azS×T1stS×Tza
19 fvres zS×T1stS×Tz=1stz
20 19 eleq1d zS×T1stS×Tza1stza
21 1st2nd2 zS×Tz=1stz2ndz
22 xp2nd zS×T2ndzT
23 elxp6 za×Tz=1stz2ndz1stza2ndzT
24 anass z=1stz2ndz1stza2ndzTz=1stz2ndz1stza2ndzT
25 an32 z=1stz2ndz1stza2ndzTz=1stz2ndz2ndzT1stza
26 23 24 25 3bitr2i za×Tz=1stz2ndz2ndzT1stza
27 26 baib z=1stz2ndz2ndzTza×T1stza
28 21 22 27 syl2anc zS×Tza×T1stza
29 20 28 bitr4d zS×T1stS×Tzaza×T
30 29 pm5.32i zS×T1stS×TzazS×Tza×T
31 18 30 bitri z1stS×T-1azS×Tza×T
32 sgon SransigAlgebraSsigAlgebraS
33 sigasspw SsigAlgebraSS𝒫S
34 pwssb S𝒫SaSaS
35 34 biimpi S𝒫SaSaS
36 1 32 33 35 4syl φaSaS
37 36 r19.21bi φaSaS
38 xpss1 aSa×TS×T
39 37 38 syl φaSa×TS×T
40 39 sseld φaSza×TzS×T
41 40 pm4.71rd φaSza×TzS×Tza×T
42 31 41 bitr4id φaSz1stS×T-1aza×T
43 42 eqrdv φaS1stS×T-1a=a×T
44 1 adantr φaSSransigAlgebra
45 2 adantr φaSTransigAlgebra
46 simpr φaSaS
47 eqid T=T
48 issgon TsigAlgebraTTransigAlgebraT=T
49 2 47 48 sylanblrc φTsigAlgebraT
50 baselsiga TsigAlgebraTTT
51 49 50 syl φTT
52 51 adantr φaSTT
53 elsx SransigAlgebraTransigAlgebraaSTTa×TS×sT
54 44 45 46 52 53 syl22anc φaSa×TS×sT
55 43 54 eqeltrd φaS1stS×T-1aS×sT
56 55 ralrimiva φaS1stS×T-1aS×sT
57 11 1 ismbfm φ1stS×TS×sTMblFnμS1stS×TSS×sTaS1stS×T-1aS×sT
58 15 56 57 mpbir2and φ1stS×TS×sTMblFnμS