Database
BASIC REAL AND COMPLEX FUNCTIONS
Basic trigonometry
Inverse trigonometric functions
2efiatan
Next ⟩
tanatan
Metamath Proof Explorer
Ascii
Unicode
Theorem
2efiatan
Description:
Value of the exponential of an artcangent.
(Contributed by
Mario Carneiro
, 2-Apr-2015)
Ref
Expression
Assertion
2efiatan
⊢
A
∈
dom
arctan
→
e
2
i
arctan
A
=
2
i
A
+
i
−
1
Proof
Step
Hyp
Ref
Expression
1
atanval
⊢
A
∈
dom
arctan
→
arctan
A
=
i
2
log
1
−
i
A
−
log
1
+
i
A
2
1
oveq2d
⊢
A
∈
dom
arctan
→
2
i
arctan
A
=
2
i
i
2
log
1
−
i
A
−
log
1
+
i
A
3
2cn
⊢
2
∈
ℂ
4
3
a1i
⊢
A
∈
dom
arctan
→
2
∈
ℂ
5
ax-icn
⊢
i
∈
ℂ
6
5
a1i
⊢
A
∈
dom
arctan
→
i
∈
ℂ
7
atancl
⊢
A
∈
dom
arctan
→
arctan
A
∈
ℂ
8
4
6
7
mulassd
⊢
A
∈
dom
arctan
→
2
i
arctan
A
=
2
i
arctan
A
9
halfcl
⊢
i
∈
ℂ
→
i
2
∈
ℂ
10
5
9
ax-mp
⊢
i
2
∈
ℂ
11
3
5
10
mulassi
⊢
2
i
i
2
=
2
i
i
2
12
3
5
10
mul12i
⊢
2
i
i
2
=
i
2
i
2
13
2ne0
⊢
2
≠
0
14
5
3
13
divcan2i
⊢
2
i
2
=
i
15
14
oveq2i
⊢
i
2
i
2
=
i
i
16
ixi
⊢
i
i
=
−
1
17
15
16
eqtri
⊢
i
2
i
2
=
−
1
18
11
12
17
3eqtri
⊢
2
i
i
2
=
−
1
19
18
oveq1i
⊢
2
i
i
2
log
1
−
i
A
−
log
1
+
i
A
=
-1
log
1
−
i
A
−
log
1
+
i
A
20
ax-1cn
⊢
1
∈
ℂ
21
atandm2
⊢
A
∈
dom
arctan
↔
A
∈
ℂ
∧
1
−
i
A
≠
0
∧
1
+
i
A
≠
0
22
21
simp1bi
⊢
A
∈
dom
arctan
→
A
∈
ℂ
23
mulcl
⊢
i
∈
ℂ
∧
A
∈
ℂ
→
i
A
∈
ℂ
24
5
22
23
sylancr
⊢
A
∈
dom
arctan
→
i
A
∈
ℂ
25
subcl
⊢
1
∈
ℂ
∧
i
A
∈
ℂ
→
1
−
i
A
∈
ℂ
26
20
24
25
sylancr
⊢
A
∈
dom
arctan
→
1
−
i
A
∈
ℂ
27
21
simp2bi
⊢
A
∈
dom
arctan
→
1
−
i
A
≠
0
28
26
27
logcld
⊢
A
∈
dom
arctan
→
log
1
−
i
A
∈
ℂ
29
addcl
⊢
1
∈
ℂ
∧
i
A
∈
ℂ
→
1
+
i
A
∈
ℂ
30
20
24
29
sylancr
⊢
A
∈
dom
arctan
→
1
+
i
A
∈
ℂ
31
21
simp3bi
⊢
A
∈
dom
arctan
→
1
+
i
A
≠
0
32
30
31
logcld
⊢
A
∈
dom
arctan
→
log
1
+
i
A
∈
ℂ
33
28
32
subcld
⊢
A
∈
dom
arctan
→
log
1
−
i
A
−
log
1
+
i
A
∈
ℂ
34
33
mulm1d
⊢
A
∈
dom
arctan
→
-1
log
1
−
i
A
−
log
1
+
i
A
=
−
log
1
−
i
A
−
log
1
+
i
A
35
19
34
eqtrid
⊢
A
∈
dom
arctan
→
2
i
i
2
log
1
−
i
A
−
log
1
+
i
A
=
−
log
1
−
i
A
−
log
1
+
i
A
36
2mulicn
⊢
2
i
∈
ℂ
37
36
a1i
⊢
A
∈
dom
arctan
→
2
i
∈
ℂ
38
10
a1i
⊢
A
∈
dom
arctan
→
i
2
∈
ℂ
39
37
38
33
mulassd
⊢
A
∈
dom
arctan
→
2
i
i
2
log
1
−
i
A
−
log
1
+
i
A
=
2
i
i
2
log
1
−
i
A
−
log
1
+
i
A
40
28
32
negsubdi2d
⊢
A
∈
dom
arctan
→
−
log
1
−
i
A
−
log
1
+
i
A
=
log
1
+
i
A
−
log
1
−
i
A
41
35
39
40
3eqtr3d
⊢
A
∈
dom
arctan
→
2
i
i
2
log
1
−
i
A
−
log
1
+
i
A
=
log
1
+
i
A
−
log
1
−
i
A
42
2
8
41
3eqtr3d
⊢
A
∈
dom
arctan
→
2
i
arctan
A
=
log
1
+
i
A
−
log
1
−
i
A
43
42
fveq2d
⊢
A
∈
dom
arctan
→
e
2
i
arctan
A
=
e
log
1
+
i
A
−
log
1
−
i
A
44
efsub
⊢
log
1
+
i
A
∈
ℂ
∧
log
1
−
i
A
∈
ℂ
→
e
log
1
+
i
A
−
log
1
−
i
A
=
e
log
1
+
i
A
e
log
1
−
i
A
45
32
28
44
syl2anc
⊢
A
∈
dom
arctan
→
e
log
1
+
i
A
−
log
1
−
i
A
=
e
log
1
+
i
A
e
log
1
−
i
A
46
eflog
⊢
1
+
i
A
∈
ℂ
∧
1
+
i
A
≠
0
→
e
log
1
+
i
A
=
1
+
i
A
47
30
31
46
syl2anc
⊢
A
∈
dom
arctan
→
e
log
1
+
i
A
=
1
+
i
A
48
eflog
⊢
1
−
i
A
∈
ℂ
∧
1
−
i
A
≠
0
→
e
log
1
−
i
A
=
1
−
i
A
49
26
27
48
syl2anc
⊢
A
∈
dom
arctan
→
e
log
1
−
i
A
=
1
−
i
A
50
47
49
oveq12d
⊢
A
∈
dom
arctan
→
e
log
1
+
i
A
e
log
1
−
i
A
=
1
+
i
A
1
−
i
A
51
negsub
⊢
i
∈
ℂ
∧
A
∈
ℂ
→
i
+
−
A
=
i
−
A
52
5
22
51
sylancr
⊢
A
∈
dom
arctan
→
i
+
−
A
=
i
−
A
53
6
mulridd
⊢
A
∈
dom
arctan
→
i
⋅
1
=
i
54
16
oveq1i
⊢
i
i
A
=
-1
A
55
6
6
22
mulassd
⊢
A
∈
dom
arctan
→
i
i
A
=
i
i
A
56
22
mulm1d
⊢
A
∈
dom
arctan
→
-1
A
=
−
A
57
54
55
56
3eqtr3a
⊢
A
∈
dom
arctan
→
i
i
A
=
−
A
58
53
57
oveq12d
⊢
A
∈
dom
arctan
→
i
⋅
1
+
i
i
A
=
i
+
−
A
59
6
22
6
pnpcan2d
⊢
A
∈
dom
arctan
→
i
+
i
-
A
+
i
=
i
−
A
60
52
58
59
3eqtr4d
⊢
A
∈
dom
arctan
→
i
⋅
1
+
i
i
A
=
i
+
i
-
A
+
i
61
20
a1i
⊢
A
∈
dom
arctan
→
1
∈
ℂ
62
6
61
24
adddid
⊢
A
∈
dom
arctan
→
i
1
+
i
A
=
i
⋅
1
+
i
i
A
63
6
2timesd
⊢
A
∈
dom
arctan
→
2
i
=
i
+
i
64
63
oveq1d
⊢
A
∈
dom
arctan
→
2
i
−
A
+
i
=
i
+
i
-
A
+
i
65
60
62
64
3eqtr4d
⊢
A
∈
dom
arctan
→
i
1
+
i
A
=
2
i
−
A
+
i
66
6
61
24
subdid
⊢
A
∈
dom
arctan
→
i
1
−
i
A
=
i
⋅
1
−
i
i
A
67
53
57
oveq12d
⊢
A
∈
dom
arctan
→
i
⋅
1
−
i
i
A
=
i
−
−
A
68
subneg
⊢
i
∈
ℂ
∧
A
∈
ℂ
→
i
−
−
A
=
i
+
A
69
5
22
68
sylancr
⊢
A
∈
dom
arctan
→
i
−
−
A
=
i
+
A
70
67
69
eqtrd
⊢
A
∈
dom
arctan
→
i
⋅
1
−
i
i
A
=
i
+
A
71
addcom
⊢
i
∈
ℂ
∧
A
∈
ℂ
→
i
+
A
=
A
+
i
72
5
22
71
sylancr
⊢
A
∈
dom
arctan
→
i
+
A
=
A
+
i
73
66
70
72
3eqtrd
⊢
A
∈
dom
arctan
→
i
1
−
i
A
=
A
+
i
74
65
73
oveq12d
⊢
A
∈
dom
arctan
→
i
1
+
i
A
i
1
−
i
A
=
2
i
−
A
+
i
A
+
i
75
ine0
⊢
i
≠
0
76
75
a1i
⊢
A
∈
dom
arctan
→
i
≠
0
77
30
26
6
27
76
divcan5d
⊢
A
∈
dom
arctan
→
i
1
+
i
A
i
1
−
i
A
=
1
+
i
A
1
−
i
A
78
addcl
⊢
A
∈
ℂ
∧
i
∈
ℂ
→
A
+
i
∈
ℂ
79
22
5
78
sylancl
⊢
A
∈
dom
arctan
→
A
+
i
∈
ℂ
80
subneg
⊢
A
∈
ℂ
∧
i
∈
ℂ
→
A
−
−
i
=
A
+
i
81
22
5
80
sylancl
⊢
A
∈
dom
arctan
→
A
−
−
i
=
A
+
i
82
atandm
⊢
A
∈
dom
arctan
↔
A
∈
ℂ
∧
A
≠
−
i
∧
A
≠
i
83
82
simp2bi
⊢
A
∈
dom
arctan
→
A
≠
−
i
84
negicn
⊢
−
i
∈
ℂ
85
subeq0
⊢
A
∈
ℂ
∧
−
i
∈
ℂ
→
A
−
−
i
=
0
↔
A
=
−
i
86
85
necon3bid
⊢
A
∈
ℂ
∧
−
i
∈
ℂ
→
A
−
−
i
≠
0
↔
A
≠
−
i
87
22
84
86
sylancl
⊢
A
∈
dom
arctan
→
A
−
−
i
≠
0
↔
A
≠
−
i
88
83
87
mpbird
⊢
A
∈
dom
arctan
→
A
−
−
i
≠
0
89
81
88
eqnetrrd
⊢
A
∈
dom
arctan
→
A
+
i
≠
0
90
37
79
79
89
divsubdird
⊢
A
∈
dom
arctan
→
2
i
−
A
+
i
A
+
i
=
2
i
A
+
i
−
A
+
i
A
+
i
91
74
77
90
3eqtr3d
⊢
A
∈
dom
arctan
→
1
+
i
A
1
−
i
A
=
2
i
A
+
i
−
A
+
i
A
+
i
92
79
89
dividd
⊢
A
∈
dom
arctan
→
A
+
i
A
+
i
=
1
93
92
oveq2d
⊢
A
∈
dom
arctan
→
2
i
A
+
i
−
A
+
i
A
+
i
=
2
i
A
+
i
−
1
94
50
91
93
3eqtrd
⊢
A
∈
dom
arctan
→
e
log
1
+
i
A
e
log
1
−
i
A
=
2
i
A
+
i
−
1
95
43
45
94
3eqtrd
⊢
A
∈
dom
arctan
→
e
2
i
arctan
A
=
2
i
A
+
i
−
1