Metamath Proof Explorer


Theorem aaliou3lem8

Description: Lemma for aaliou3 . (Contributed by Stefan O'Rear, 20-Nov-2014)

Ref Expression
Assertion aaliou3lem8 AB+x22x+1!B2x!A

Proof

Step Hyp Ref Expression
1 2rp 2+
2 rpdivcl 2+B+2B+
3 1 2 mpan B+2B+
4 3 rpred B+2B
5 2re 2
6 1lt2 1<2
7 expnbnd 2B21<2a2B<2a
8 5 6 7 mp3an23 2Ba2B<2a
9 4 8 syl B+a2B<2a
10 9 adantl AB+a2B<2a
11 simprl AB+a2B<2aa
12 simpll AB+a2B<2aA
13 nnaddm1cl aAa+A-1
14 11 12 13 syl2anc AB+a2B<2aa+A-1
15 simplr AB+a2B<2aB+
16 rerpdivcl 2B+2B
17 5 15 16 sylancr AB+a2B<2a2B
18 11 nnnn0d AB+a2B<2aa0
19 reexpcl 2a02a
20 5 18 19 sylancr AB+a2B<2a2a
21 11 12 nnaddcld AB+a2B<2aa+A
22 nnm1nn0 a+Aa+A-10
23 21 22 syl AB+a2B<2aa+A-10
24 peano2nn0 a+A-10a+A-1+10
25 23 24 syl AB+a2B<2aa+A-1+10
26 25 faccld AB+a2B<2aa+A-1+1!
27 26 nnzd AB+a2B<2aa+A-1+1!
28 23 faccld AB+a2B<2aa+A-1!
29 28 nnzd AB+a2B<2aa+A-1!
30 12 nnzd AB+a2B<2aA
31 29 30 zmulcld AB+a2B<2aa+A-1!A
32 27 31 zsubcld AB+a2B<2aa+A-1+1!a+A-1!A
33 rpexpcl 2+a+A-1+1!a+A-1!A2a+A-1+1!a+A-1!A+
34 1 32 33 sylancr AB+a2B<2a2a+A-1+1!a+A-1!A+
35 34 rpred AB+a2B<2a2a+A-1+1!a+A-1!A
36 simprr AB+a2B<2a2B<2a
37 17 20 36 ltled AB+a2B<2a2B2a
38 5 a1i AB+a2B<2a2
39 1le2 12
40 39 a1i AB+a2B<2a12
41 11 nnred AB+a2B<2aa
42 28 nnred AB+a2B<2aa+A-1!
43 18 nn0ge0d AB+a2B<2a0a
44 28 nnge1d AB+a2B<2a1a+A-1!
45 41 42 43 44 lemulge12d AB+a2B<2aaa+A-1!a
46 facp1 a+A-10a+A-1+1!=a+A-1!a+A-1+1
47 23 46 syl AB+a2B<2aa+A-1+1!=a+A-1!a+A-1+1
48 47 oveq1d AB+a2B<2aa+A-1+1!a+A-1!A=a+A-1!a+A-1+1a+A-1!A
49 28 nncnd AB+a2B<2aa+A-1!
50 25 nn0cnd AB+a2B<2aa+A-1+1
51 12 nncnd AB+a2B<2aA
52 49 50 51 subdid AB+a2B<2aa+A-1!a+A-1+1-A=a+A-1!a+A-1+1a+A-1!A
53 11 nncnd AB+a2B<2aa
54 21 nncnd AB+a2B<2aa+A
55 1cnd AB+a2B<2a1
56 54 55 npcand AB+a2B<2aa+A-1+1=a+A
57 53 51 56 mvrraddd AB+a2B<2aa+A-1+1-A=a
58 57 oveq2d AB+a2B<2aa+A-1!a+A-1+1-A=a+A-1!a
59 48 52 58 3eqtr2d AB+a2B<2aa+A-1+1!a+A-1!A=a+A-1!a
60 45 59 breqtrrd AB+a2B<2aaa+A-1+1!a+A-1!A
61 11 nnzd AB+a2B<2aa
62 eluz aa+A-1+1!a+A-1!Aa+A-1+1!a+A-1!Aaaa+A-1+1!a+A-1!A
63 61 32 62 syl2anc AB+a2B<2aa+A-1+1!a+A-1!Aaaa+A-1+1!a+A-1!A
64 60 63 mpbird AB+a2B<2aa+A-1+1!a+A-1!Aa
65 38 40 64 leexp2ad AB+a2B<2a2a2a+A-1+1!a+A-1!A
66 17 20 35 37 65 letrd AB+a2B<2a2B2a+A-1+1!a+A-1!A
67 rpcnne0 2+220
68 1 67 mp1i AB+a2B<2a220
69 expsub 220a+A-1+1!a+A-1!A2a+A-1+1!a+A-1!A=2a+A-1+1!2a+A-1!A
70 68 27 31 69 syl12anc AB+a2B<2a2a+A-1+1!a+A-1!A=2a+A-1+1!2a+A-1!A
71 2cn 2
72 71 a1i AB+a2B<2a2
73 12 nnnn0d AB+a2B<2aA0
74 28 nnnn0d AB+a2B<2aa+A-1!0
75 72 73 74 expmuld AB+a2B<2a2a+A-1!A=2a+A-1!A
76 75 oveq2d AB+a2B<2a2a+A-1+1!2a+A-1!A=2a+A-1+1!2a+A-1!A
77 rpexpcl 2+a+A-1+1!2a+A-1+1!+
78 1 27 77 sylancr AB+a2B<2a2a+A-1+1!+
79 78 rpcnd AB+a2B<2a2a+A-1+1!
80 rpexpcl 2+a+A-1!2a+A-1!+
81 1 29 80 sylancr AB+a2B<2a2a+A-1!+
82 81 30 rpexpcld AB+a2B<2a2a+A-1!A+
83 82 rpcnd AB+a2B<2a2a+A-1!A
84 82 rpne0d AB+a2B<2a2a+A-1!A0
85 79 83 84 divrecd AB+a2B<2a2a+A-1+1!2a+A-1!A=2a+A-1+1!12a+A-1!A
86 70 76 85 3eqtrrd AB+a2B<2a2a+A-1+1!12a+A-1!A=2a+A-1+1!a+A-1!A
87 66 86 breqtrrd AB+a2B<2a2B2a+A-1+1!12a+A-1!A
88 82 rpreccld AB+a2B<2a12a+A-1!A+
89 78 88 rpmulcld AB+a2B<2a2a+A-1+1!12a+A-1!A+
90 89 rpred AB+a2B<2a2a+A-1+1!12a+A-1!A
91 38 90 15 ledivmuld AB+a2B<2a2B2a+A-1+1!12a+A-1!A2B2a+A-1+1!12a+A-1!A
92 87 91 mpbid AB+a2B<2a2B2a+A-1+1!12a+A-1!A
93 15 rpcnd AB+a2B<2aB
94 88 rpcnd AB+a2B<2a12a+A-1!A
95 93 79 94 mul12d AB+a2B<2aB2a+A-1+1!12a+A-1!A=2a+A-1+1!B12a+A-1!A
96 92 95 breqtrd AB+a2B<2a22a+A-1+1!B12a+A-1!A
97 15 88 rpmulcld AB+a2B<2aB12a+A-1!A+
98 97 rpred AB+a2B<2aB12a+A-1!A
99 38 98 78 ledivmuld AB+a2B<2a22a+A-1+1!B12a+A-1!A22a+A-1+1!B12a+A-1!A
100 96 99 mpbird AB+a2B<2a22a+A-1+1!B12a+A-1!A
101 26 nnnn0d AB+a2B<2aa+A-1+1!0
102 expneg 2a+A-1+1!02a+A-1+1!=12a+A-1+1!
103 71 101 102 sylancr AB+a2B<2a2a+A-1+1!=12a+A-1+1!
104 103 oveq2d AB+a2B<2a22a+A-1+1!=212a+A-1+1!
105 78 rpne0d AB+a2B<2a2a+A-1+1!0
106 72 79 105 divrecd AB+a2B<2a22a+A-1+1!=212a+A-1+1!
107 104 106 eqtr4d AB+a2B<2a22a+A-1+1!=22a+A-1+1!
108 93 83 84 divrecd AB+a2B<2aB2a+A-1!A=B12a+A-1!A
109 100 107 108 3brtr4d AB+a2B<2a22a+A-1+1!B2a+A-1!A
110 fvoveq1 x=a+A-1x+1!=a+A-1+1!
111 110 negeqd x=a+A-1x+1!=a+A-1+1!
112 111 oveq2d x=a+A-12x+1!=2a+A-1+1!
113 112 oveq2d x=a+A-122x+1!=22a+A-1+1!
114 fveq2 x=a+A-1x!=a+A-1!
115 114 oveq2d x=a+A-12x!=2a+A-1!
116 115 oveq1d x=a+A-12x!A=2a+A-1!A
117 116 oveq2d x=a+A-1B2x!A=B2a+A-1!A
118 113 117 breq12d x=a+A-122x+1!B2x!A22a+A-1+1!B2a+A-1!A
119 118 rspcev a+A-122a+A-1+1!B2a+A-1!Ax22x+1!B2x!A
120 14 109 119 syl2anc AB+a2B<2ax22x+1!B2x!A
121 10 120 rexlimddv AB+x22x+1!B2x!A