Database
BASIC REAL AND COMPLEX FUNCTIONS
Polynomials
Liouville's approximation theorem
aalioulem6
Next ⟩
aaliou
Metamath Proof Explorer
Ascii
Unicode
Theorem
aalioulem6
Description:
Lemma for
aaliou
.
(Contributed by
Stefan O'Rear
, 16-Nov-2014)
Ref
Expression
Hypotheses
aalioulem2.a
⊢
N
=
deg
F
aalioulem2.b
⊢
φ
→
F
∈
Poly
ℤ
aalioulem2.c
⊢
φ
→
N
∈
ℕ
aalioulem2.d
⊢
φ
→
A
∈
ℝ
aalioulem3.e
⊢
φ
→
F
A
=
0
Assertion
aalioulem6
⊢
φ
→
∃
x
∈
ℝ
+
∀
p
∈
ℤ
∀
q
∈
ℕ
A
=
p
q
∨
x
q
N
≤
A
−
p
q
Proof
Step
Hyp
Ref
Expression
1
aalioulem2.a
⊢
N
=
deg
F
2
aalioulem2.b
⊢
φ
→
F
∈
Poly
ℤ
3
aalioulem2.c
⊢
φ
→
N
∈
ℕ
4
aalioulem2.d
⊢
φ
→
A
∈
ℝ
5
aalioulem3.e
⊢
φ
→
F
A
=
0
6
1
2
3
4
aalioulem2
⊢
φ
→
∃
a
∈
ℝ
+
∀
p
∈
ℤ
∀
q
∈
ℕ
F
p
q
=
0
→
A
=
p
q
∨
a
q
N
≤
A
−
p
q
7
1
2
3
4
5
aalioulem5
⊢
φ
→
∃
b
∈
ℝ
+
∀
p
∈
ℤ
∀
q
∈
ℕ
F
p
q
≠
0
→
A
=
p
q
∨
b
q
N
≤
A
−
p
q
8
reeanv
⊢
∃
a
∈
ℝ
+
∃
b
∈
ℝ
+
∀
p
∈
ℤ
∀
q
∈
ℕ
F
p
q
=
0
→
A
=
p
q
∨
a
q
N
≤
A
−
p
q
∧
∀
p
∈
ℤ
∀
q
∈
ℕ
F
p
q
≠
0
→
A
=
p
q
∨
b
q
N
≤
A
−
p
q
↔
∃
a
∈
ℝ
+
∀
p
∈
ℤ
∀
q
∈
ℕ
F
p
q
=
0
→
A
=
p
q
∨
a
q
N
≤
A
−
p
q
∧
∃
b
∈
ℝ
+
∀
p
∈
ℤ
∀
q
∈
ℕ
F
p
q
≠
0
→
A
=
p
q
∨
b
q
N
≤
A
−
p
q
9
6
7
8
sylanbrc
⊢
φ
→
∃
a
∈
ℝ
+
∃
b
∈
ℝ
+
∀
p
∈
ℤ
∀
q
∈
ℕ
F
p
q
=
0
→
A
=
p
q
∨
a
q
N
≤
A
−
p
q
∧
∀
p
∈
ℤ
∀
q
∈
ℕ
F
p
q
≠
0
→
A
=
p
q
∨
b
q
N
≤
A
−
p
q
10
r19.26-2
⊢
∀
p
∈
ℤ
∀
q
∈
ℕ
F
p
q
=
0
→
A
=
p
q
∨
a
q
N
≤
A
−
p
q
∧
F
p
q
≠
0
→
A
=
p
q
∨
b
q
N
≤
A
−
p
q
↔
∀
p
∈
ℤ
∀
q
∈
ℕ
F
p
q
=
0
→
A
=
p
q
∨
a
q
N
≤
A
−
p
q
∧
∀
p
∈
ℤ
∀
q
∈
ℕ
F
p
q
≠
0
→
A
=
p
q
∨
b
q
N
≤
A
−
p
q
11
ifcl
⊢
a
∈
ℝ
+
∧
b
∈
ℝ
+
→
if
a
≤
b
a
b
∈
ℝ
+
12
11
adantl
⊢
φ
∧
a
∈
ℝ
+
∧
b
∈
ℝ
+
→
if
a
≤
b
a
b
∈
ℝ
+
13
simpr
⊢
φ
∧
a
∈
ℝ
+
∧
b
∈
ℝ
+
∧
p
∈
ℤ
∧
q
∈
ℕ
∧
F
p
q
=
0
→
F
p
q
=
0
14
11
ad2antlr
⊢
φ
∧
a
∈
ℝ
+
∧
b
∈
ℝ
+
∧
p
∈
ℤ
∧
q
∈
ℕ
→
if
a
≤
b
a
b
∈
ℝ
+
15
nnrp
⊢
q
∈
ℕ
→
q
∈
ℝ
+
16
15
ad2antll
⊢
φ
∧
a
∈
ℝ
+
∧
b
∈
ℝ
+
∧
p
∈
ℤ
∧
q
∈
ℕ
→
q
∈
ℝ
+
17
3
ad2antrr
⊢
φ
∧
a
∈
ℝ
+
∧
b
∈
ℝ
+
∧
p
∈
ℤ
∧
q
∈
ℕ
→
N
∈
ℕ
18
17
nnzd
⊢
φ
∧
a
∈
ℝ
+
∧
b
∈
ℝ
+
∧
p
∈
ℤ
∧
q
∈
ℕ
→
N
∈
ℤ
19
16
18
rpexpcld
⊢
φ
∧
a
∈
ℝ
+
∧
b
∈
ℝ
+
∧
p
∈
ℤ
∧
q
∈
ℕ
→
q
N
∈
ℝ
+
20
14
19
rpdivcld
⊢
φ
∧
a
∈
ℝ
+
∧
b
∈
ℝ
+
∧
p
∈
ℤ
∧
q
∈
ℕ
→
if
a
≤
b
a
b
q
N
∈
ℝ
+
21
20
rpred
⊢
φ
∧
a
∈
ℝ
+
∧
b
∈
ℝ
+
∧
p
∈
ℤ
∧
q
∈
ℕ
→
if
a
≤
b
a
b
q
N
∈
ℝ
22
simplrl
⊢
φ
∧
a
∈
ℝ
+
∧
b
∈
ℝ
+
∧
p
∈
ℤ
∧
q
∈
ℕ
→
a
∈
ℝ
+
23
22
19
rpdivcld
⊢
φ
∧
a
∈
ℝ
+
∧
b
∈
ℝ
+
∧
p
∈
ℤ
∧
q
∈
ℕ
→
a
q
N
∈
ℝ
+
24
23
rpred
⊢
φ
∧
a
∈
ℝ
+
∧
b
∈
ℝ
+
∧
p
∈
ℤ
∧
q
∈
ℕ
→
a
q
N
∈
ℝ
25
4
ad2antrr
⊢
φ
∧
a
∈
ℝ
+
∧
b
∈
ℝ
+
∧
p
∈
ℤ
∧
q
∈
ℕ
→
A
∈
ℝ
26
znq
⊢
p
∈
ℤ
∧
q
∈
ℕ
→
p
q
∈
ℚ
27
qre
⊢
p
q
∈
ℚ
→
p
q
∈
ℝ
28
26
27
syl
⊢
p
∈
ℤ
∧
q
∈
ℕ
→
p
q
∈
ℝ
29
28
adantl
⊢
φ
∧
a
∈
ℝ
+
∧
b
∈
ℝ
+
∧
p
∈
ℤ
∧
q
∈
ℕ
→
p
q
∈
ℝ
30
25
29
resubcld
⊢
φ
∧
a
∈
ℝ
+
∧
b
∈
ℝ
+
∧
p
∈
ℤ
∧
q
∈
ℕ
→
A
−
p
q
∈
ℝ
31
30
recnd
⊢
φ
∧
a
∈
ℝ
+
∧
b
∈
ℝ
+
∧
p
∈
ℤ
∧
q
∈
ℕ
→
A
−
p
q
∈
ℂ
32
31
abscld
⊢
φ
∧
a
∈
ℝ
+
∧
b
∈
ℝ
+
∧
p
∈
ℤ
∧
q
∈
ℕ
→
A
−
p
q
∈
ℝ
33
21
24
32
3jca
⊢
φ
∧
a
∈
ℝ
+
∧
b
∈
ℝ
+
∧
p
∈
ℤ
∧
q
∈
ℕ
→
if
a
≤
b
a
b
q
N
∈
ℝ
∧
a
q
N
∈
ℝ
∧
A
−
p
q
∈
ℝ
34
33
adantr
⊢
φ
∧
a
∈
ℝ
+
∧
b
∈
ℝ
+
∧
p
∈
ℤ
∧
q
∈
ℕ
∧
a
q
N
≤
A
−
p
q
→
if
a
≤
b
a
b
q
N
∈
ℝ
∧
a
q
N
∈
ℝ
∧
A
−
p
q
∈
ℝ
35
14
rpred
⊢
φ
∧
a
∈
ℝ
+
∧
b
∈
ℝ
+
∧
p
∈
ℤ
∧
q
∈
ℕ
→
if
a
≤
b
a
b
∈
ℝ
36
22
rpred
⊢
φ
∧
a
∈
ℝ
+
∧
b
∈
ℝ
+
∧
p
∈
ℤ
∧
q
∈
ℕ
→
a
∈
ℝ
37
simplrr
⊢
φ
∧
a
∈
ℝ
+
∧
b
∈
ℝ
+
∧
p
∈
ℤ
∧
q
∈
ℕ
→
b
∈
ℝ
+
38
37
rpred
⊢
φ
∧
a
∈
ℝ
+
∧
b
∈
ℝ
+
∧
p
∈
ℤ
∧
q
∈
ℕ
→
b
∈
ℝ
39
min1
⊢
a
∈
ℝ
∧
b
∈
ℝ
→
if
a
≤
b
a
b
≤
a
40
36
38
39
syl2anc
⊢
φ
∧
a
∈
ℝ
+
∧
b
∈
ℝ
+
∧
p
∈
ℤ
∧
q
∈
ℕ
→
if
a
≤
b
a
b
≤
a
41
35
36
19
40
lediv1dd
⊢
φ
∧
a
∈
ℝ
+
∧
b
∈
ℝ
+
∧
p
∈
ℤ
∧
q
∈
ℕ
→
if
a
≤
b
a
b
q
N
≤
a
q
N
42
41
anim1i
⊢
φ
∧
a
∈
ℝ
+
∧
b
∈
ℝ
+
∧
p
∈
ℤ
∧
q
∈
ℕ
∧
a
q
N
≤
A
−
p
q
→
if
a
≤
b
a
b
q
N
≤
a
q
N
∧
a
q
N
≤
A
−
p
q
43
letr
⊢
if
a
≤
b
a
b
q
N
∈
ℝ
∧
a
q
N
∈
ℝ
∧
A
−
p
q
∈
ℝ
→
if
a
≤
b
a
b
q
N
≤
a
q
N
∧
a
q
N
≤
A
−
p
q
→
if
a
≤
b
a
b
q
N
≤
A
−
p
q
44
34
42
43
sylc
⊢
φ
∧
a
∈
ℝ
+
∧
b
∈
ℝ
+
∧
p
∈
ℤ
∧
q
∈
ℕ
∧
a
q
N
≤
A
−
p
q
→
if
a
≤
b
a
b
q
N
≤
A
−
p
q
45
44
ex
⊢
φ
∧
a
∈
ℝ
+
∧
b
∈
ℝ
+
∧
p
∈
ℤ
∧
q
∈
ℕ
→
a
q
N
≤
A
−
p
q
→
if
a
≤
b
a
b
q
N
≤
A
−
p
q
46
45
adantr
⊢
φ
∧
a
∈
ℝ
+
∧
b
∈
ℝ
+
∧
p
∈
ℤ
∧
q
∈
ℕ
∧
F
p
q
=
0
→
a
q
N
≤
A
−
p
q
→
if
a
≤
b
a
b
q
N
≤
A
−
p
q
47
46
orim2d
⊢
φ
∧
a
∈
ℝ
+
∧
b
∈
ℝ
+
∧
p
∈
ℤ
∧
q
∈
ℕ
∧
F
p
q
=
0
→
A
=
p
q
∨
a
q
N
≤
A
−
p
q
→
A
=
p
q
∨
if
a
≤
b
a
b
q
N
≤
A
−
p
q
48
13
47
embantd
⊢
φ
∧
a
∈
ℝ
+
∧
b
∈
ℝ
+
∧
p
∈
ℤ
∧
q
∈
ℕ
∧
F
p
q
=
0
→
F
p
q
=
0
→
A
=
p
q
∨
a
q
N
≤
A
−
p
q
→
A
=
p
q
∨
if
a
≤
b
a
b
q
N
≤
A
−
p
q
49
48
adantrd
⊢
φ
∧
a
∈
ℝ
+
∧
b
∈
ℝ
+
∧
p
∈
ℤ
∧
q
∈
ℕ
∧
F
p
q
=
0
→
F
p
q
=
0
→
A
=
p
q
∨
a
q
N
≤
A
−
p
q
∧
F
p
q
≠
0
→
A
=
p
q
∨
b
q
N
≤
A
−
p
q
→
A
=
p
q
∨
if
a
≤
b
a
b
q
N
≤
A
−
p
q
50
simpr
⊢
φ
∧
a
∈
ℝ
+
∧
b
∈
ℝ
+
∧
p
∈
ℤ
∧
q
∈
ℕ
∧
F
p
q
≠
0
→
F
p
q
≠
0
51
37
19
rpdivcld
⊢
φ
∧
a
∈
ℝ
+
∧
b
∈
ℝ
+
∧
p
∈
ℤ
∧
q
∈
ℕ
→
b
q
N
∈
ℝ
+
52
51
rpred
⊢
φ
∧
a
∈
ℝ
+
∧
b
∈
ℝ
+
∧
p
∈
ℤ
∧
q
∈
ℕ
→
b
q
N
∈
ℝ
53
21
52
32
3jca
⊢
φ
∧
a
∈
ℝ
+
∧
b
∈
ℝ
+
∧
p
∈
ℤ
∧
q
∈
ℕ
→
if
a
≤
b
a
b
q
N
∈
ℝ
∧
b
q
N
∈
ℝ
∧
A
−
p
q
∈
ℝ
54
53
adantr
⊢
φ
∧
a
∈
ℝ
+
∧
b
∈
ℝ
+
∧
p
∈
ℤ
∧
q
∈
ℕ
∧
b
q
N
≤
A
−
p
q
→
if
a
≤
b
a
b
q
N
∈
ℝ
∧
b
q
N
∈
ℝ
∧
A
−
p
q
∈
ℝ
55
min2
⊢
a
∈
ℝ
∧
b
∈
ℝ
→
if
a
≤
b
a
b
≤
b
56
36
38
55
syl2anc
⊢
φ
∧
a
∈
ℝ
+
∧
b
∈
ℝ
+
∧
p
∈
ℤ
∧
q
∈
ℕ
→
if
a
≤
b
a
b
≤
b
57
35
38
19
56
lediv1dd
⊢
φ
∧
a
∈
ℝ
+
∧
b
∈
ℝ
+
∧
p
∈
ℤ
∧
q
∈
ℕ
→
if
a
≤
b
a
b
q
N
≤
b
q
N
58
57
anim1i
⊢
φ
∧
a
∈
ℝ
+
∧
b
∈
ℝ
+
∧
p
∈
ℤ
∧
q
∈
ℕ
∧
b
q
N
≤
A
−
p
q
→
if
a
≤
b
a
b
q
N
≤
b
q
N
∧
b
q
N
≤
A
−
p
q
59
letr
⊢
if
a
≤
b
a
b
q
N
∈
ℝ
∧
b
q
N
∈
ℝ
∧
A
−
p
q
∈
ℝ
→
if
a
≤
b
a
b
q
N
≤
b
q
N
∧
b
q
N
≤
A
−
p
q
→
if
a
≤
b
a
b
q
N
≤
A
−
p
q
60
54
58
59
sylc
⊢
φ
∧
a
∈
ℝ
+
∧
b
∈
ℝ
+
∧
p
∈
ℤ
∧
q
∈
ℕ
∧
b
q
N
≤
A
−
p
q
→
if
a
≤
b
a
b
q
N
≤
A
−
p
q
61
60
ex
⊢
φ
∧
a
∈
ℝ
+
∧
b
∈
ℝ
+
∧
p
∈
ℤ
∧
q
∈
ℕ
→
b
q
N
≤
A
−
p
q
→
if
a
≤
b
a
b
q
N
≤
A
−
p
q
62
61
adantr
⊢
φ
∧
a
∈
ℝ
+
∧
b
∈
ℝ
+
∧
p
∈
ℤ
∧
q
∈
ℕ
∧
F
p
q
≠
0
→
b
q
N
≤
A
−
p
q
→
if
a
≤
b
a
b
q
N
≤
A
−
p
q
63
62
orim2d
⊢
φ
∧
a
∈
ℝ
+
∧
b
∈
ℝ
+
∧
p
∈
ℤ
∧
q
∈
ℕ
∧
F
p
q
≠
0
→
A
=
p
q
∨
b
q
N
≤
A
−
p
q
→
A
=
p
q
∨
if
a
≤
b
a
b
q
N
≤
A
−
p
q
64
50
63
embantd
⊢
φ
∧
a
∈
ℝ
+
∧
b
∈
ℝ
+
∧
p
∈
ℤ
∧
q
∈
ℕ
∧
F
p
q
≠
0
→
F
p
q
≠
0
→
A
=
p
q
∨
b
q
N
≤
A
−
p
q
→
A
=
p
q
∨
if
a
≤
b
a
b
q
N
≤
A
−
p
q
65
64
adantld
⊢
φ
∧
a
∈
ℝ
+
∧
b
∈
ℝ
+
∧
p
∈
ℤ
∧
q
∈
ℕ
∧
F
p
q
≠
0
→
F
p
q
=
0
→
A
=
p
q
∨
a
q
N
≤
A
−
p
q
∧
F
p
q
≠
0
→
A
=
p
q
∨
b
q
N
≤
A
−
p
q
→
A
=
p
q
∨
if
a
≤
b
a
b
q
N
≤
A
−
p
q
66
49
65
pm2.61dane
⊢
φ
∧
a
∈
ℝ
+
∧
b
∈
ℝ
+
∧
p
∈
ℤ
∧
q
∈
ℕ
→
F
p
q
=
0
→
A
=
p
q
∨
a
q
N
≤
A
−
p
q
∧
F
p
q
≠
0
→
A
=
p
q
∨
b
q
N
≤
A
−
p
q
→
A
=
p
q
∨
if
a
≤
b
a
b
q
N
≤
A
−
p
q
67
66
ralimdvva
⊢
φ
∧
a
∈
ℝ
+
∧
b
∈
ℝ
+
→
∀
p
∈
ℤ
∀
q
∈
ℕ
F
p
q
=
0
→
A
=
p
q
∨
a
q
N
≤
A
−
p
q
∧
F
p
q
≠
0
→
A
=
p
q
∨
b
q
N
≤
A
−
p
q
→
∀
p
∈
ℤ
∀
q
∈
ℕ
A
=
p
q
∨
if
a
≤
b
a
b
q
N
≤
A
−
p
q
68
oveq1
⊢
x
=
if
a
≤
b
a
b
→
x
q
N
=
if
a
≤
b
a
b
q
N
69
68
breq1d
⊢
x
=
if
a
≤
b
a
b
→
x
q
N
≤
A
−
p
q
↔
if
a
≤
b
a
b
q
N
≤
A
−
p
q
70
69
orbi2d
⊢
x
=
if
a
≤
b
a
b
→
A
=
p
q
∨
x
q
N
≤
A
−
p
q
↔
A
=
p
q
∨
if
a
≤
b
a
b
q
N
≤
A
−
p
q
71
70
2ralbidv
⊢
x
=
if
a
≤
b
a
b
→
∀
p
∈
ℤ
∀
q
∈
ℕ
A
=
p
q
∨
x
q
N
≤
A
−
p
q
↔
∀
p
∈
ℤ
∀
q
∈
ℕ
A
=
p
q
∨
if
a
≤
b
a
b
q
N
≤
A
−
p
q
72
71
rspcev
⊢
if
a
≤
b
a
b
∈
ℝ
+
∧
∀
p
∈
ℤ
∀
q
∈
ℕ
A
=
p
q
∨
if
a
≤
b
a
b
q
N
≤
A
−
p
q
→
∃
x
∈
ℝ
+
∀
p
∈
ℤ
∀
q
∈
ℕ
A
=
p
q
∨
x
q
N
≤
A
−
p
q
73
12
67
72
syl6an
⊢
φ
∧
a
∈
ℝ
+
∧
b
∈
ℝ
+
→
∀
p
∈
ℤ
∀
q
∈
ℕ
F
p
q
=
0
→
A
=
p
q
∨
a
q
N
≤
A
−
p
q
∧
F
p
q
≠
0
→
A
=
p
q
∨
b
q
N
≤
A
−
p
q
→
∃
x
∈
ℝ
+
∀
p
∈
ℤ
∀
q
∈
ℕ
A
=
p
q
∨
x
q
N
≤
A
−
p
q
74
10
73
biimtrrid
⊢
φ
∧
a
∈
ℝ
+
∧
b
∈
ℝ
+
→
∀
p
∈
ℤ
∀
q
∈
ℕ
F
p
q
=
0
→
A
=
p
q
∨
a
q
N
≤
A
−
p
q
∧
∀
p
∈
ℤ
∀
q
∈
ℕ
F
p
q
≠
0
→
A
=
p
q
∨
b
q
N
≤
A
−
p
q
→
∃
x
∈
ℝ
+
∀
p
∈
ℤ
∀
q
∈
ℕ
A
=
p
q
∨
x
q
N
≤
A
−
p
q
75
74
rexlimdvva
⊢
φ
→
∃
a
∈
ℝ
+
∃
b
∈
ℝ
+
∀
p
∈
ℤ
∀
q
∈
ℕ
F
p
q
=
0
→
A
=
p
q
∨
a
q
N
≤
A
−
p
q
∧
∀
p
∈
ℤ
∀
q
∈
ℕ
F
p
q
≠
0
→
A
=
p
q
∨
b
q
N
≤
A
−
p
q
→
∃
x
∈
ℝ
+
∀
p
∈
ℤ
∀
q
∈
ℕ
A
=
p
q
∨
x
q
N
≤
A
−
p
q
76
9
75
mpd
⊢
φ
→
∃
x
∈
ℝ
+
∀
p
∈
ℤ
∀
q
∈
ℕ
A
=
p
q
∨
x
q
N
≤
A
−
p
q