Metamath Proof Explorer


Theorem aalioulem6

Description: Lemma for aaliou . (Contributed by Stefan O'Rear, 16-Nov-2014)

Ref Expression
Hypotheses aalioulem2.a N=degF
aalioulem2.b φFPoly
aalioulem2.c φN
aalioulem2.d φA
aalioulem3.e φFA=0
Assertion aalioulem6 φx+pqA=pqxqNApq

Proof

Step Hyp Ref Expression
1 aalioulem2.a N=degF
2 aalioulem2.b φFPoly
3 aalioulem2.c φN
4 aalioulem2.d φA
5 aalioulem3.e φFA=0
6 1 2 3 4 aalioulem2 φa+pqFpq=0A=pqaqNApq
7 1 2 3 4 5 aalioulem5 φb+pqFpq0A=pqbqNApq
8 reeanv a+b+pqFpq=0A=pqaqNApqpqFpq0A=pqbqNApqa+pqFpq=0A=pqaqNApqb+pqFpq0A=pqbqNApq
9 6 7 8 sylanbrc φa+b+pqFpq=0A=pqaqNApqpqFpq0A=pqbqNApq
10 r19.26-2 pqFpq=0A=pqaqNApqFpq0A=pqbqNApqpqFpq=0A=pqaqNApqpqFpq0A=pqbqNApq
11 ifcl a+b+ifabab+
12 11 adantl φa+b+ifabab+
13 simpr φa+b+pqFpq=0Fpq=0
14 11 ad2antlr φa+b+pqifabab+
15 nnrp qq+
16 15 ad2antll φa+b+pqq+
17 3 ad2antrr φa+b+pqN
18 17 nnzd φa+b+pqN
19 16 18 rpexpcld φa+b+pqqN+
20 14 19 rpdivcld φa+b+pqifababqN+
21 20 rpred φa+b+pqifababqN
22 simplrl φa+b+pqa+
23 22 19 rpdivcld φa+b+pqaqN+
24 23 rpred φa+b+pqaqN
25 4 ad2antrr φa+b+pqA
26 znq pqpq
27 qre pqpq
28 26 27 syl pqpq
29 28 adantl φa+b+pqpq
30 25 29 resubcld φa+b+pqApq
31 30 recnd φa+b+pqApq
32 31 abscld φa+b+pqApq
33 21 24 32 3jca φa+b+pqifababqNaqNApq
34 33 adantr φa+b+pqaqNApqifababqNaqNApq
35 14 rpred φa+b+pqifabab
36 22 rpred φa+b+pqa
37 simplrr φa+b+pqb+
38 37 rpred φa+b+pqb
39 min1 abifababa
40 36 38 39 syl2anc φa+b+pqifababa
41 35 36 19 40 lediv1dd φa+b+pqifababqNaqN
42 41 anim1i φa+b+pqaqNApqifababqNaqNaqNApq
43 letr ifababqNaqNApqifababqNaqNaqNApqifababqNApq
44 34 42 43 sylc φa+b+pqaqNApqifababqNApq
45 44 ex φa+b+pqaqNApqifababqNApq
46 45 adantr φa+b+pqFpq=0aqNApqifababqNApq
47 46 orim2d φa+b+pqFpq=0A=pqaqNApqA=pqifababqNApq
48 13 47 embantd φa+b+pqFpq=0Fpq=0A=pqaqNApqA=pqifababqNApq
49 48 adantrd φa+b+pqFpq=0Fpq=0A=pqaqNApqFpq0A=pqbqNApqA=pqifababqNApq
50 simpr φa+b+pqFpq0Fpq0
51 37 19 rpdivcld φa+b+pqbqN+
52 51 rpred φa+b+pqbqN
53 21 52 32 3jca φa+b+pqifababqNbqNApq
54 53 adantr φa+b+pqbqNApqifababqNbqNApq
55 min2 abifababb
56 36 38 55 syl2anc φa+b+pqifababb
57 35 38 19 56 lediv1dd φa+b+pqifababqNbqN
58 57 anim1i φa+b+pqbqNApqifababqNbqNbqNApq
59 letr ifababqNbqNApqifababqNbqNbqNApqifababqNApq
60 54 58 59 sylc φa+b+pqbqNApqifababqNApq
61 60 ex φa+b+pqbqNApqifababqNApq
62 61 adantr φa+b+pqFpq0bqNApqifababqNApq
63 62 orim2d φa+b+pqFpq0A=pqbqNApqA=pqifababqNApq
64 50 63 embantd φa+b+pqFpq0Fpq0A=pqbqNApqA=pqifababqNApq
65 64 adantld φa+b+pqFpq0Fpq=0A=pqaqNApqFpq0A=pqbqNApqA=pqifababqNApq
66 49 65 pm2.61dane φa+b+pqFpq=0A=pqaqNApqFpq0A=pqbqNApqA=pqifababqNApq
67 66 ralimdvva φa+b+pqFpq=0A=pqaqNApqFpq0A=pqbqNApqpqA=pqifababqNApq
68 oveq1 x=ifababxqN=ifababqN
69 68 breq1d x=ifababxqNApqifababqNApq
70 69 orbi2d x=ifababA=pqxqNApqA=pqifababqNApq
71 70 2ralbidv x=ifababpqA=pqxqNApqpqA=pqifababqNApq
72 71 rspcev ifabab+pqA=pqifababqNApqx+pqA=pqxqNApq
73 12 67 72 syl6an φa+b+pqFpq=0A=pqaqNApqFpq0A=pqbqNApqx+pqA=pqxqNApq
74 10 73 biimtrrid φa+b+pqFpq=0A=pqaqNApqpqFpq0A=pqbqNApqx+pqA=pqxqNApq
75 74 rexlimdvva φa+b+pqFpq=0A=pqaqNApqpqFpq0A=pqbqNApqx+pqA=pqxqNApq
76 9 75 mpd φx+pqA=pqxqNApq