Step |
Hyp |
Ref |
Expression |
1 |
|
fveq1 |
|
2 |
1
|
oveq2d |
|
3 |
2
|
oveq2d |
|
4 |
3
|
eqeq2d |
|
5 |
4
|
ralbidv |
|
6 |
5
|
biimparc |
|
7 |
|
simplr1 |
|
8 |
|
simplr2 |
|
9 |
|
eqeefv |
|
10 |
7 8 9
|
syl2anc |
|
11 |
|
fveecn |
|
12 |
7 11
|
sylan |
|
13 |
|
elicc01 |
|
14 |
13
|
simp1bi |
|
15 |
14
|
recnd |
|
16 |
15
|
ad2antlr |
|
17 |
|
ax-1cn |
|
18 |
|
npcan |
|
19 |
17 18
|
mpan |
|
20 |
19
|
oveq1d |
|
21 |
|
mulid2 |
|
22 |
20 21
|
sylan9eqr |
|
23 |
|
subcl |
|
24 |
17 23
|
mpan |
|
25 |
24
|
adantl |
|
26 |
|
simpr |
|
27 |
|
simpl |
|
28 |
25 26 27
|
adddird |
|
29 |
22 28
|
eqtr3d |
|
30 |
29
|
eqeq1d |
|
31 |
12 16 30
|
syl2anc |
|
32 |
|
eqcom |
|
33 |
31 32
|
bitrdi |
|
34 |
33
|
ralbidva |
|
35 |
10 34
|
bitrd |
|
36 |
6 35
|
syl5ibr |
|
37 |
36
|
expd |
|
38 |
37
|
impr |
|
39 |
38
|
necon3d |
|
40 |
39
|
ex |
|
41 |
40
|
com23 |
|
42 |
41
|
exp4a |
|
43 |
42
|
3imp2 |
|
44 |
|
simplr1 |
|
45 |
|
simplr3 |
|
46 |
|
eqeelen |
|
47 |
44 45 46
|
syl2anc |
|
48 |
47
|
necon3bid |
|
49 |
43 48
|
mpbid |
|