Metamath Proof Explorer


Theorem ax5seglem5

Description: Lemma for ax5seg . If B is between A and C , and A is distinct from B , then A is distinct from C . (Contributed by Scott Fenton, 11-Jun-2013)

Ref Expression
Assertion ax5seglem5 NA𝔼NB𝔼NC𝔼NABT01i1NBi=1TAi+TCij=1NAjCj20

Proof

Step Hyp Ref Expression
1 fveq1 A=CAi=Ci
2 1 oveq2d A=CTAi=TCi
3 2 oveq2d A=C1TAi+TAi=1TAi+TCi
4 3 eqeq2d A=CBi=1TAi+TAiBi=1TAi+TCi
5 4 ralbidv A=Ci1NBi=1TAi+TAii1NBi=1TAi+TCi
6 5 biimparc i1NBi=1TAi+TCiA=Ci1NBi=1TAi+TAi
7 simplr1 NA𝔼NB𝔼NC𝔼NT01A𝔼N
8 simplr2 NA𝔼NB𝔼NC𝔼NT01B𝔼N
9 eqeefv A𝔼NB𝔼NA=Bi1NAi=Bi
10 7 8 9 syl2anc NA𝔼NB𝔼NC𝔼NT01A=Bi1NAi=Bi
11 fveecn A𝔼Ni1NAi
12 7 11 sylan NA𝔼NB𝔼NC𝔼NT01i1NAi
13 elicc01 T01T0TT1
14 13 simp1bi T01T
15 14 recnd T01T
16 15 ad2antlr NA𝔼NB𝔼NC𝔼NT01i1NT
17 ax-1cn 1
18 npcan 1T1-T+T=1
19 17 18 mpan T1-T+T=1
20 19 oveq1d T1-T+TAi=1Ai
21 mullid Ai1Ai=Ai
22 20 21 sylan9eqr AiT1-T+TAi=Ai
23 subcl 1T1T
24 17 23 mpan T1T
25 24 adantl AiT1T
26 simpr AiTT
27 simpl AiTAi
28 25 26 27 adddird AiT1-T+TAi=1TAi+TAi
29 22 28 eqtr3d AiTAi=1TAi+TAi
30 29 eqeq1d AiTAi=Bi1TAi+TAi=Bi
31 12 16 30 syl2anc NA𝔼NB𝔼NC𝔼NT01i1NAi=Bi1TAi+TAi=Bi
32 eqcom 1TAi+TAi=BiBi=1TAi+TAi
33 31 32 bitrdi NA𝔼NB𝔼NC𝔼NT01i1NAi=BiBi=1TAi+TAi
34 33 ralbidva NA𝔼NB𝔼NC𝔼NT01i1NAi=Bii1NBi=1TAi+TAi
35 10 34 bitrd NA𝔼NB𝔼NC𝔼NT01A=Bi1NBi=1TAi+TAi
36 6 35 imbitrrid NA𝔼NB𝔼NC𝔼NT01i1NBi=1TAi+TCiA=CA=B
37 36 expd NA𝔼NB𝔼NC𝔼NT01i1NBi=1TAi+TCiA=CA=B
38 37 impr NA𝔼NB𝔼NC𝔼NT01i1NBi=1TAi+TCiA=CA=B
39 38 necon3d NA𝔼NB𝔼NC𝔼NT01i1NBi=1TAi+TCiABAC
40 39 ex NA𝔼NB𝔼NC𝔼NT01i1NBi=1TAi+TCiABAC
41 40 com23 NA𝔼NB𝔼NC𝔼NABT01i1NBi=1TAi+TCiAC
42 41 exp4a NA𝔼NB𝔼NC𝔼NABT01i1NBi=1TAi+TCiAC
43 42 3imp2 NA𝔼NB𝔼NC𝔼NABT01i1NBi=1TAi+TCiAC
44 simplr1 NA𝔼NB𝔼NC𝔼NABT01i1NBi=1TAi+TCiA𝔼N
45 simplr3 NA𝔼NB𝔼NC𝔼NABT01i1NBi=1TAi+TCiC𝔼N
46 eqeelen A𝔼NC𝔼NA=Cj=1NAjCj2=0
47 44 45 46 syl2anc NA𝔼NB𝔼NC𝔼NABT01i1NBi=1TAi+TCiA=Cj=1NAjCj2=0
48 47 necon3bid NA𝔼NB𝔼NC𝔼NABT01i1NBi=1TAi+TCiACj=1NAjCj20
49 43 48 mpbid NA𝔼NB𝔼NC𝔼NABT01i1NBi=1TAi+TCij=1NAjCj20