Description: Lemma for ax5seg . If B is between A and C , and A is distinct from B , then A is distinct from C . (Contributed by Scott Fenton, 11-Jun-2013)
Ref | Expression | ||
---|---|---|---|
Assertion | ax5seglem5 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fveq1 | |
|
2 | 1 | oveq2d | |
3 | 2 | oveq2d | |
4 | 3 | eqeq2d | |
5 | 4 | ralbidv | |
6 | 5 | biimparc | |
7 | simplr1 | |
|
8 | simplr2 | |
|
9 | eqeefv | |
|
10 | 7 8 9 | syl2anc | |
11 | fveecn | |
|
12 | 7 11 | sylan | |
13 | elicc01 | |
|
14 | 13 | simp1bi | |
15 | 14 | recnd | |
16 | 15 | ad2antlr | |
17 | ax-1cn | |
|
18 | npcan | |
|
19 | 17 18 | mpan | |
20 | 19 | oveq1d | |
21 | mullid | |
|
22 | 20 21 | sylan9eqr | |
23 | subcl | |
|
24 | 17 23 | mpan | |
25 | 24 | adantl | |
26 | simpr | |
|
27 | simpl | |
|
28 | 25 26 27 | adddird | |
29 | 22 28 | eqtr3d | |
30 | 29 | eqeq1d | |
31 | 12 16 30 | syl2anc | |
32 | eqcom | |
|
33 | 31 32 | bitrdi | |
34 | 33 | ralbidva | |
35 | 10 34 | bitrd | |
36 | 6 35 | imbitrrid | |
37 | 36 | expd | |
38 | 37 | impr | |
39 | 38 | necon3d | |
40 | 39 | ex | |
41 | 40 | com23 | |
42 | 41 | exp4a | |
43 | 42 | 3imp2 | |
44 | simplr1 | |
|
45 | simplr3 | |
|
46 | eqeelen | |
|
47 | 44 45 46 | syl2anc | |
48 | 47 | necon3bid | |
49 | 43 48 | mpbid | |