| Step |
Hyp |
Ref |
Expression |
| 1 |
|
simprll |
|
| 2 |
1
|
ad2antrr |
|
| 3 |
|
fveecn |
|
| 4 |
2 3
|
sylancom |
|
| 5 |
|
elicc01 |
|
| 6 |
5
|
simp1bi |
|
| 7 |
6
|
recnd |
|
| 8 |
7
|
ad2antrl |
|
| 9 |
8
|
adantr |
|
| 10 |
|
simprrl |
|
| 11 |
10
|
ad2antrr |
|
| 12 |
|
fveecn |
|
| 13 |
11 12
|
sylancom |
|
| 14 |
|
simprrr |
|
| 15 |
14
|
ad2antrr |
|
| 16 |
|
fveecn |
|
| 17 |
15 16
|
sylancom |
|
| 18 |
|
fveq2 |
|
| 19 |
|
fveq2 |
|
| 20 |
19
|
oveq2d |
|
| 21 |
|
fveq2 |
|
| 22 |
21
|
oveq2d |
|
| 23 |
20 22
|
oveq12d |
|
| 24 |
18 23
|
eqeq12d |
|
| 25 |
24
|
rspccva |
|
| 26 |
25
|
adantll |
|
| 27 |
26
|
adantll |
|
| 28 |
|
ax5seglem8 |
|
| 29 |
|
oveq1 |
|
| 30 |
29
|
oveq1d |
|
| 31 |
30
|
oveq1d |
|
| 32 |
31
|
eqcomd |
|
| 33 |
28 32
|
sylan9eq |
|
| 34 |
33
|
3impa |
|
| 35 |
4 9 13 17 27 34
|
syl221anc |
|
| 36 |
35
|
sumeq2dv |
|
| 37 |
|
fzfid |
|
| 38 |
13 17
|
subcld |
|
| 39 |
38
|
sqcld |
|
| 40 |
37 8 39
|
fsummulc2 |
|
| 41 |
4 13
|
subcld |
|
| 42 |
41
|
sqcld |
|
| 43 |
37 8 42
|
fsummulc2 |
|
| 44 |
43
|
oveq1d |
|
| 45 |
9 42
|
mulcld |
|
| 46 |
4 17
|
subcld |
|
| 47 |
46
|
sqcld |
|
| 48 |
37 45 47
|
fsumsub |
|
| 49 |
44 48
|
eqtr4d |
|
| 50 |
49
|
oveq2d |
|
| 51 |
|
ax-1cn |
|
| 52 |
|
subcl |
|
| 53 |
51 8 52
|
sylancr |
|
| 54 |
45 47
|
subcld |
|
| 55 |
37 53 54
|
fsummulc2 |
|
| 56 |
50 55
|
eqtrd |
|
| 57 |
56
|
oveq2d |
|
| 58 |
|
simprlr |
|
| 59 |
58
|
ad2antrr |
|
| 60 |
|
fveecn |
|
| 61 |
59 60
|
sylancom |
|
| 62 |
61 17
|
subcld |
|
| 63 |
62
|
sqcld |
|
| 64 |
51 9 52
|
sylancr |
|
| 65 |
64 54
|
mulcld |
|
| 66 |
37 63 65
|
fsumadd |
|
| 67 |
57 66
|
eqtr4d |
|
| 68 |
36 40 67
|
3eqtr4d |
|