Metamath Proof Explorer


Theorem ax5seglem9

Description: Lemma for ax5seg . Take the calculation in ax5seglem8 and turn it into a series of measurements. (Contributed by Scott Fenton, 12-Jun-2013) (Revised by Mario Carneiro, 22-May-2014)

Ref Expression
Assertion ax5seglem9 N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N T 0 1 i 1 N B i = 1 T A i + T C i T j = 1 N C j D j 2 = j = 1 N B j D j 2 + 1 T T j = 1 N A j C j 2 j = 1 N A j D j 2

Proof

Step Hyp Ref Expression
1 simprll N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N A 𝔼 N
2 1 ad2antrr N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N T 0 1 i 1 N B i = 1 T A i + T C i j 1 N A 𝔼 N
3 fveecn A 𝔼 N j 1 N A j
4 2 3 sylancom N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N T 0 1 i 1 N B i = 1 T A i + T C i j 1 N A j
5 elicc01 T 0 1 T 0 T T 1
6 5 simp1bi T 0 1 T
7 6 recnd T 0 1 T
8 7 ad2antrl N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N T 0 1 i 1 N B i = 1 T A i + T C i T
9 8 adantr N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N T 0 1 i 1 N B i = 1 T A i + T C i j 1 N T
10 simprrl N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N C 𝔼 N
11 10 ad2antrr N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N T 0 1 i 1 N B i = 1 T A i + T C i j 1 N C 𝔼 N
12 fveecn C 𝔼 N j 1 N C j
13 11 12 sylancom N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N T 0 1 i 1 N B i = 1 T A i + T C i j 1 N C j
14 simprrr N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N D 𝔼 N
15 14 ad2antrr N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N T 0 1 i 1 N B i = 1 T A i + T C i j 1 N D 𝔼 N
16 fveecn D 𝔼 N j 1 N D j
17 15 16 sylancom N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N T 0 1 i 1 N B i = 1 T A i + T C i j 1 N D j
18 fveq2 i = j B i = B j
19 fveq2 i = j A i = A j
20 19 oveq2d i = j 1 T A i = 1 T A j
21 fveq2 i = j C i = C j
22 21 oveq2d i = j T C i = T C j
23 20 22 oveq12d i = j 1 T A i + T C i = 1 T A j + T C j
24 18 23 eqeq12d i = j B i = 1 T A i + T C i B j = 1 T A j + T C j
25 24 rspccva i 1 N B i = 1 T A i + T C i j 1 N B j = 1 T A j + T C j
26 25 adantll T 0 1 i 1 N B i = 1 T A i + T C i j 1 N B j = 1 T A j + T C j
27 26 adantll N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N T 0 1 i 1 N B i = 1 T A i + T C i j 1 N B j = 1 T A j + T C j
28 ax5seglem8 A j T C j D j T C j D j 2 = 1 T A j + T C j - D j 2 + 1 T T A j C j 2 A j D j 2
29 oveq1 B j = 1 T A j + T C j B j D j = 1 T A j + T C j - D j
30 29 oveq1d B j = 1 T A j + T C j B j D j 2 = 1 T A j + T C j - D j 2
31 30 oveq1d B j = 1 T A j + T C j B j D j 2 + 1 T T A j C j 2 A j D j 2 = 1 T A j + T C j - D j 2 + 1 T T A j C j 2 A j D j 2
32 31 eqcomd B j = 1 T A j + T C j 1 T A j + T C j - D j 2 + 1 T T A j C j 2 A j D j 2 = B j D j 2 + 1 T T A j C j 2 A j D j 2
33 28 32 sylan9eq A j T C j D j B j = 1 T A j + T C j T C j D j 2 = B j D j 2 + 1 T T A j C j 2 A j D j 2
34 33 3impa A j T C j D j B j = 1 T A j + T C j T C j D j 2 = B j D j 2 + 1 T T A j C j 2 A j D j 2
35 4 9 13 17 27 34 syl221anc N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N T 0 1 i 1 N B i = 1 T A i + T C i j 1 N T C j D j 2 = B j D j 2 + 1 T T A j C j 2 A j D j 2
36 35 sumeq2dv N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N T 0 1 i 1 N B i = 1 T A i + T C i j = 1 N T C j D j 2 = j = 1 N B j D j 2 + 1 T T A j C j 2 A j D j 2
37 fzfid N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N T 0 1 i 1 N B i = 1 T A i + T C i 1 N Fin
38 13 17 subcld N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N T 0 1 i 1 N B i = 1 T A i + T C i j 1 N C j D j
39 38 sqcld N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N T 0 1 i 1 N B i = 1 T A i + T C i j 1 N C j D j 2
40 37 8 39 fsummulc2 N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N T 0 1 i 1 N B i = 1 T A i + T C i T j = 1 N C j D j 2 = j = 1 N T C j D j 2
41 4 13 subcld N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N T 0 1 i 1 N B i = 1 T A i + T C i j 1 N A j C j
42 41 sqcld N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N T 0 1 i 1 N B i = 1 T A i + T C i j 1 N A j C j 2
43 37 8 42 fsummulc2 N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N T 0 1 i 1 N B i = 1 T A i + T C i T j = 1 N A j C j 2 = j = 1 N T A j C j 2
44 43 oveq1d N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N T 0 1 i 1 N B i = 1 T A i + T C i T j = 1 N A j C j 2 j = 1 N A j D j 2 = j = 1 N T A j C j 2 j = 1 N A j D j 2
45 9 42 mulcld N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N T 0 1 i 1 N B i = 1 T A i + T C i j 1 N T A j C j 2
46 4 17 subcld N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N T 0 1 i 1 N B i = 1 T A i + T C i j 1 N A j D j
47 46 sqcld N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N T 0 1 i 1 N B i = 1 T A i + T C i j 1 N A j D j 2
48 37 45 47 fsumsub N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N T 0 1 i 1 N B i = 1 T A i + T C i j = 1 N T A j C j 2 A j D j 2 = j = 1 N T A j C j 2 j = 1 N A j D j 2
49 44 48 eqtr4d N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N T 0 1 i 1 N B i = 1 T A i + T C i T j = 1 N A j C j 2 j = 1 N A j D j 2 = j = 1 N T A j C j 2 A j D j 2
50 49 oveq2d N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N T 0 1 i 1 N B i = 1 T A i + T C i 1 T T j = 1 N A j C j 2 j = 1 N A j D j 2 = 1 T j = 1 N T A j C j 2 A j D j 2
51 ax-1cn 1
52 subcl 1 T 1 T
53 51 8 52 sylancr N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N T 0 1 i 1 N B i = 1 T A i + T C i 1 T
54 45 47 subcld N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N T 0 1 i 1 N B i = 1 T A i + T C i j 1 N T A j C j 2 A j D j 2
55 37 53 54 fsummulc2 N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N T 0 1 i 1 N B i = 1 T A i + T C i 1 T j = 1 N T A j C j 2 A j D j 2 = j = 1 N 1 T T A j C j 2 A j D j 2
56 50 55 eqtrd N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N T 0 1 i 1 N B i = 1 T A i + T C i 1 T T j = 1 N A j C j 2 j = 1 N A j D j 2 = j = 1 N 1 T T A j C j 2 A j D j 2
57 56 oveq2d N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N T 0 1 i 1 N B i = 1 T A i + T C i j = 1 N B j D j 2 + 1 T T j = 1 N A j C j 2 j = 1 N A j D j 2 = j = 1 N B j D j 2 + j = 1 N 1 T T A j C j 2 A j D j 2
58 simprlr N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N B 𝔼 N
59 58 ad2antrr N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N T 0 1 i 1 N B i = 1 T A i + T C i j 1 N B 𝔼 N
60 fveecn B 𝔼 N j 1 N B j
61 59 60 sylancom N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N T 0 1 i 1 N B i = 1 T A i + T C i j 1 N B j
62 61 17 subcld N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N T 0 1 i 1 N B i = 1 T A i + T C i j 1 N B j D j
63 62 sqcld N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N T 0 1 i 1 N B i = 1 T A i + T C i j 1 N B j D j 2
64 51 9 52 sylancr N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N T 0 1 i 1 N B i = 1 T A i + T C i j 1 N 1 T
65 64 54 mulcld N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N T 0 1 i 1 N B i = 1 T A i + T C i j 1 N 1 T T A j C j 2 A j D j 2
66 37 63 65 fsumadd N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N T 0 1 i 1 N B i = 1 T A i + T C i j = 1 N B j D j 2 + 1 T T A j C j 2 A j D j 2 = j = 1 N B j D j 2 + j = 1 N 1 T T A j C j 2 A j D j 2
67 57 66 eqtr4d N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N T 0 1 i 1 N B i = 1 T A i + T C i j = 1 N B j D j 2 + 1 T T j = 1 N A j C j 2 j = 1 N A j D j 2 = j = 1 N B j D j 2 + 1 T T A j C j 2 A j D j 2
68 36 40 67 3eqtr4d N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N T 0 1 i 1 N B i = 1 T A i + T C i T j = 1 N C j D j 2 = j = 1 N B j D j 2 + 1 T T j = 1 N A j C j 2 j = 1 N A j D j 2