Description: Lemma for ax5seg . Take the calculation in ax5seglem8 and turn it into a series of measurements. (Contributed by Scott Fenton, 12-Jun-2013) (Revised by Mario Carneiro, 22-May-2014)
Ref | Expression | ||
---|---|---|---|
Assertion | ax5seglem9 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simprll | |
|
2 | 1 | ad2antrr | |
3 | fveecn | |
|
4 | 2 3 | sylancom | |
5 | elicc01 | |
|
6 | 5 | simp1bi | |
7 | 6 | recnd | |
8 | 7 | ad2antrl | |
9 | 8 | adantr | |
10 | simprrl | |
|
11 | 10 | ad2antrr | |
12 | fveecn | |
|
13 | 11 12 | sylancom | |
14 | simprrr | |
|
15 | 14 | ad2antrr | |
16 | fveecn | |
|
17 | 15 16 | sylancom | |
18 | fveq2 | |
|
19 | fveq2 | |
|
20 | 19 | oveq2d | |
21 | fveq2 | |
|
22 | 21 | oveq2d | |
23 | 20 22 | oveq12d | |
24 | 18 23 | eqeq12d | |
25 | 24 | rspccva | |
26 | 25 | adantll | |
27 | 26 | adantll | |
28 | ax5seglem8 | |
|
29 | oveq1 | |
|
30 | 29 | oveq1d | |
31 | 30 | oveq1d | |
32 | 31 | eqcomd | |
33 | 28 32 | sylan9eq | |
34 | 33 | 3impa | |
35 | 4 9 13 17 27 34 | syl221anc | |
36 | 35 | sumeq2dv | |
37 | fzfid | |
|
38 | 13 17 | subcld | |
39 | 38 | sqcld | |
40 | 37 8 39 | fsummulc2 | |
41 | 4 13 | subcld | |
42 | 41 | sqcld | |
43 | 37 8 42 | fsummulc2 | |
44 | 43 | oveq1d | |
45 | 9 42 | mulcld | |
46 | 4 17 | subcld | |
47 | 46 | sqcld | |
48 | 37 45 47 | fsumsub | |
49 | 44 48 | eqtr4d | |
50 | 49 | oveq2d | |
51 | ax-1cn | |
|
52 | subcl | |
|
53 | 51 8 52 | sylancr | |
54 | 45 47 | subcld | |
55 | 37 53 54 | fsummulc2 | |
56 | 50 55 | eqtrd | |
57 | 56 | oveq2d | |
58 | simprlr | |
|
59 | 58 | ad2antrr | |
60 | fveecn | |
|
61 | 59 60 | sylancom | |
62 | 61 17 | subcld | |
63 | 62 | sqcld | |
64 | 51 9 52 | sylancr | |
65 | 64 54 | mulcld | |
66 | 37 63 65 | fsumadd | |
67 | 57 66 | eqtr4d | |
68 | 36 40 67 | 3eqtr4d | |