Step |
Hyp |
Ref |
Expression |
1 |
|
simpl21 |
|
2 |
|
simpl22 |
|
3 |
1 2
|
jca |
|
4 |
|
simpl23 |
|
5 |
|
simpl3r |
|
6 |
4 5
|
jca |
|
7 |
|
simprll |
|
8 |
|
simprlr |
|
9 |
|
simp21 |
|
10 |
9
|
ad2antrr |
|
11 |
|
fveecn |
|
12 |
10 11
|
sylan |
|
13 |
|
simp3r |
|
14 |
13
|
ad2antrr |
|
15 |
|
fveecn |
|
16 |
14 15
|
sylan |
|
17 |
|
mulid2 |
|
18 |
|
mul02 |
|
19 |
17 18
|
oveqan12d |
|
20 |
|
addid1 |
|
21 |
20
|
adantr |
|
22 |
19 21
|
eqtrd |
|
23 |
12 16 22
|
syl2anc |
|
24 |
|
oveq2 |
|
25 |
|
1m0e1 |
|
26 |
24 25
|
eqtrdi |
|
27 |
26
|
oveq1d |
|
28 |
|
oveq1 |
|
29 |
27 28
|
oveq12d |
|
30 |
29
|
eqeq1d |
|
31 |
30
|
ad2antlr |
|
32 |
23 31
|
mpbird |
|
33 |
32
|
eqeq2d |
|
34 |
|
eqcom |
|
35 |
33 34
|
bitrdi |
|
36 |
35
|
biimpd |
|
37 |
36
|
adantrd |
|
38 |
37
|
ralimdva |
|
39 |
38
|
impancom |
|
40 |
9
|
ad2antrr |
|
41 |
|
simp3l |
|
42 |
41
|
ad2antrr |
|
43 |
|
eqeefv |
|
44 |
40 42 43
|
syl2anc |
|
45 |
39 44
|
sylibrd |
|
46 |
45
|
necon3d |
|
47 |
46
|
impr |
|
48 |
47
|
anasss |
|
49 |
|
eqtr2 |
|
50 |
49
|
ralimi |
|
51 |
50
|
adantr |
|
52 |
51
|
ad2antll |
|
53 |
|
axeuclidlem |
|
54 |
3 6 7 8 48 52 53
|
syl231anc |
|
55 |
54
|
exp32 |
|
56 |
55
|
rexlimdvv |
|
57 |
|
brbtwn |
|
58 |
41 9 13 57
|
syl3anc |
|
59 |
|
simp22 |
|
60 |
|
simp23 |
|
61 |
|
brbtwn |
|
62 |
41 59 60 61
|
syl3anc |
|
63 |
58 62
|
3anbi12d |
|
64 |
|
r19.26 |
|
65 |
64
|
2rexbii |
|
66 |
|
reeanv |
|
67 |
65 66
|
bitri |
|
68 |
67
|
anbi1i |
|
69 |
|
r19.41vv |
|
70 |
|
df-3an |
|
71 |
68 69 70
|
3bitr4i |
|
72 |
63 71
|
bitr4di |
|
73 |
|
simpl22 |
|
74 |
|
simpl21 |
|
75 |
|
simprl |
|
76 |
|
brbtwn |
|
77 |
73 74 75 76
|
syl3anc |
|
78 |
|
simpl23 |
|
79 |
|
simprr |
|
80 |
|
brbtwn |
|
81 |
78 74 79 80
|
syl3anc |
|
82 |
|
simpl3r |
|
83 |
|
brbtwn |
|
84 |
82 75 79 83
|
syl3anc |
|
85 |
77 81 84
|
3anbi123d |
|
86 |
|
r19.26-3 |
|
87 |
86
|
rexbii |
|
88 |
87
|
2rexbii |
|
89 |
|
3reeanv |
|
90 |
88 89
|
bitri |
|
91 |
85 90
|
bitr4di |
|
92 |
91
|
2rexbidva |
|
93 |
56 72 92
|
3imtr4d |
|