Metamath Proof Explorer


Theorem axeuclid

Description: Euclid's axiom. Take an angle B A C and a point D between B and C . Now, if you extend the segment A D to a point T , then T lies between two points x and y that lie on the angle. Axiom A10 of Schwabhauser p. 13. (Contributed by Scott Fenton, 9-Sep-2013)

Ref Expression
Assertion axeuclid N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N T 𝔼 N D Btwn A T D Btwn B C A D x 𝔼 N y 𝔼 N B Btwn A x C Btwn A y T Btwn x y

Proof

Step Hyp Ref Expression
1 simpl21 N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N T 𝔼 N p 0 1 q 0 1 i 1 N D i = 1 p A i + p T i D i = 1 q B i + q C i A D A 𝔼 N
2 simpl22 N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N T 𝔼 N p 0 1 q 0 1 i 1 N D i = 1 p A i + p T i D i = 1 q B i + q C i A D B 𝔼 N
3 1 2 jca N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N T 𝔼 N p 0 1 q 0 1 i 1 N D i = 1 p A i + p T i D i = 1 q B i + q C i A D A 𝔼 N B 𝔼 N
4 simpl23 N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N T 𝔼 N p 0 1 q 0 1 i 1 N D i = 1 p A i + p T i D i = 1 q B i + q C i A D C 𝔼 N
5 simpl3r N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N T 𝔼 N p 0 1 q 0 1 i 1 N D i = 1 p A i + p T i D i = 1 q B i + q C i A D T 𝔼 N
6 4 5 jca N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N T 𝔼 N p 0 1 q 0 1 i 1 N D i = 1 p A i + p T i D i = 1 q B i + q C i A D C 𝔼 N T 𝔼 N
7 simprll N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N T 𝔼 N p 0 1 q 0 1 i 1 N D i = 1 p A i + p T i D i = 1 q B i + q C i A D p 0 1
8 simprlr N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N T 𝔼 N p 0 1 q 0 1 i 1 N D i = 1 p A i + p T i D i = 1 q B i + q C i A D q 0 1
9 simp21 N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N T 𝔼 N A 𝔼 N
10 9 ad2antrr N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N T 𝔼 N p 0 1 q 0 1 p = 0 A 𝔼 N
11 fveecn A 𝔼 N i 1 N A i
12 10 11 sylan N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N T 𝔼 N p 0 1 q 0 1 p = 0 i 1 N A i
13 simp3r N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N T 𝔼 N T 𝔼 N
14 13 ad2antrr N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N T 𝔼 N p 0 1 q 0 1 p = 0 T 𝔼 N
15 fveecn T 𝔼 N i 1 N T i
16 14 15 sylan N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N T 𝔼 N p 0 1 q 0 1 p = 0 i 1 N T i
17 mulid2 A i 1 A i = A i
18 mul02 T i 0 T i = 0
19 17 18 oveqan12d A i T i 1 A i + 0 T i = A i + 0
20 addid1 A i A i + 0 = A i
21 20 adantr A i T i A i + 0 = A i
22 19 21 eqtrd A i T i 1 A i + 0 T i = A i
23 12 16 22 syl2anc N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N T 𝔼 N p 0 1 q 0 1 p = 0 i 1 N 1 A i + 0 T i = A i
24 oveq2 p = 0 1 p = 1 0
25 1m0e1 1 0 = 1
26 24 25 eqtrdi p = 0 1 p = 1
27 26 oveq1d p = 0 1 p A i = 1 A i
28 oveq1 p = 0 p T i = 0 T i
29 27 28 oveq12d p = 0 1 p A i + p T i = 1 A i + 0 T i
30 29 eqeq1d p = 0 1 p A i + p T i = A i 1 A i + 0 T i = A i
31 30 ad2antlr N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N T 𝔼 N p 0 1 q 0 1 p = 0 i 1 N 1 p A i + p T i = A i 1 A i + 0 T i = A i
32 23 31 mpbird N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N T 𝔼 N p 0 1 q 0 1 p = 0 i 1 N 1 p A i + p T i = A i
33 32 eqeq2d N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N T 𝔼 N p 0 1 q 0 1 p = 0 i 1 N D i = 1 p A i + p T i D i = A i
34 eqcom D i = A i A i = D i
35 33 34 bitrdi N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N T 𝔼 N p 0 1 q 0 1 p = 0 i 1 N D i = 1 p A i + p T i A i = D i
36 35 biimpd N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N T 𝔼 N p 0 1 q 0 1 p = 0 i 1 N D i = 1 p A i + p T i A i = D i
37 36 adantrd N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N T 𝔼 N p 0 1 q 0 1 p = 0 i 1 N D i = 1 p A i + p T i D i = 1 q B i + q C i A i = D i
38 37 ralimdva N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N T 𝔼 N p 0 1 q 0 1 p = 0 i 1 N D i = 1 p A i + p T i D i = 1 q B i + q C i i 1 N A i = D i
39 38 impancom N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N T 𝔼 N p 0 1 q 0 1 i 1 N D i = 1 p A i + p T i D i = 1 q B i + q C i p = 0 i 1 N A i = D i
40 9 ad2antrr N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N T 𝔼 N p 0 1 q 0 1 i 1 N D i = 1 p A i + p T i D i = 1 q B i + q C i A 𝔼 N
41 simp3l N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N T 𝔼 N D 𝔼 N
42 41 ad2antrr N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N T 𝔼 N p 0 1 q 0 1 i 1 N D i = 1 p A i + p T i D i = 1 q B i + q C i D 𝔼 N
43 eqeefv A 𝔼 N D 𝔼 N A = D i 1 N A i = D i
44 40 42 43 syl2anc N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N T 𝔼 N p 0 1 q 0 1 i 1 N D i = 1 p A i + p T i D i = 1 q B i + q C i A = D i 1 N A i = D i
45 39 44 sylibrd N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N T 𝔼 N p 0 1 q 0 1 i 1 N D i = 1 p A i + p T i D i = 1 q B i + q C i p = 0 A = D
46 45 necon3d N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N T 𝔼 N p 0 1 q 0 1 i 1 N D i = 1 p A i + p T i D i = 1 q B i + q C i A D p 0
47 46 impr N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N T 𝔼 N p 0 1 q 0 1 i 1 N D i = 1 p A i + p T i D i = 1 q B i + q C i A D p 0
48 47 anasss N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N T 𝔼 N p 0 1 q 0 1 i 1 N D i = 1 p A i + p T i D i = 1 q B i + q C i A D p 0
49 eqtr2 D i = 1 p A i + p T i D i = 1 q B i + q C i 1 p A i + p T i = 1 q B i + q C i
50 49 ralimi i 1 N D i = 1 p A i + p T i D i = 1 q B i + q C i i 1 N 1 p A i + p T i = 1 q B i + q C i
51 50 adantr i 1 N D i = 1 p A i + p T i D i = 1 q B i + q C i A D i 1 N 1 p A i + p T i = 1 q B i + q C i
52 51 ad2antll N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N T 𝔼 N p 0 1 q 0 1 i 1 N D i = 1 p A i + p T i D i = 1 q B i + q C i A D i 1 N 1 p A i + p T i = 1 q B i + q C i
53 axeuclidlem A 𝔼 N B 𝔼 N C 𝔼 N T 𝔼 N p 0 1 q 0 1 p 0 i 1 N 1 p A i + p T i = 1 q B i + q C i x 𝔼 N y 𝔼 N r 0 1 s 0 1 u 0 1 i 1 N B i = 1 r A i + r x i C i = 1 s A i + s y i T i = 1 u x i + u y i
54 3 6 7 8 48 52 53 syl231anc N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N T 𝔼 N p 0 1 q 0 1 i 1 N D i = 1 p A i + p T i D i = 1 q B i + q C i A D x 𝔼 N y 𝔼 N r 0 1 s 0 1 u 0 1 i 1 N B i = 1 r A i + r x i C i = 1 s A i + s y i T i = 1 u x i + u y i
55 54 exp32 N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N T 𝔼 N p 0 1 q 0 1 i 1 N D i = 1 p A i + p T i D i = 1 q B i + q C i A D x 𝔼 N y 𝔼 N r 0 1 s 0 1 u 0 1 i 1 N B i = 1 r A i + r x i C i = 1 s A i + s y i T i = 1 u x i + u y i
56 55 rexlimdvv N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N T 𝔼 N p 0 1 q 0 1 i 1 N D i = 1 p A i + p T i D i = 1 q B i + q C i A D x 𝔼 N y 𝔼 N r 0 1 s 0 1 u 0 1 i 1 N B i = 1 r A i + r x i C i = 1 s A i + s y i T i = 1 u x i + u y i
57 brbtwn D 𝔼 N A 𝔼 N T 𝔼 N D Btwn A T p 0 1 i 1 N D i = 1 p A i + p T i
58 41 9 13 57 syl3anc N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N T 𝔼 N D Btwn A T p 0 1 i 1 N D i = 1 p A i + p T i
59 simp22 N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N T 𝔼 N B 𝔼 N
60 simp23 N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N T 𝔼 N C 𝔼 N
61 brbtwn D 𝔼 N B 𝔼 N C 𝔼 N D Btwn B C q 0 1 i 1 N D i = 1 q B i + q C i
62 41 59 60 61 syl3anc N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N T 𝔼 N D Btwn B C q 0 1 i 1 N D i = 1 q B i + q C i
63 58 62 3anbi12d N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N T 𝔼 N D Btwn A T D Btwn B C A D p 0 1 i 1 N D i = 1 p A i + p T i q 0 1 i 1 N D i = 1 q B i + q C i A D
64 r19.26 i 1 N D i = 1 p A i + p T i D i = 1 q B i + q C i i 1 N D i = 1 p A i + p T i i 1 N D i = 1 q B i + q C i
65 64 2rexbii p 0 1 q 0 1 i 1 N D i = 1 p A i + p T i D i = 1 q B i + q C i p 0 1 q 0 1 i 1 N D i = 1 p A i + p T i i 1 N D i = 1 q B i + q C i
66 reeanv p 0 1 q 0 1 i 1 N D i = 1 p A i + p T i i 1 N D i = 1 q B i + q C i p 0 1 i 1 N D i = 1 p A i + p T i q 0 1 i 1 N D i = 1 q B i + q C i
67 65 66 bitri p 0 1 q 0 1 i 1 N D i = 1 p A i + p T i D i = 1 q B i + q C i p 0 1 i 1 N D i = 1 p A i + p T i q 0 1 i 1 N D i = 1 q B i + q C i
68 67 anbi1i p 0 1 q 0 1 i 1 N D i = 1 p A i + p T i D i = 1 q B i + q C i A D p 0 1 i 1 N D i = 1 p A i + p T i q 0 1 i 1 N D i = 1 q B i + q C i A D
69 r19.41vv p 0 1 q 0 1 i 1 N D i = 1 p A i + p T i D i = 1 q B i + q C i A D p 0 1 q 0 1 i 1 N D i = 1 p A i + p T i D i = 1 q B i + q C i A D
70 df-3an p 0 1 i 1 N D i = 1 p A i + p T i q 0 1 i 1 N D i = 1 q B i + q C i A D p 0 1 i 1 N D i = 1 p A i + p T i q 0 1 i 1 N D i = 1 q B i + q C i A D
71 68 69 70 3bitr4i p 0 1 q 0 1 i 1 N D i = 1 p A i + p T i D i = 1 q B i + q C i A D p 0 1 i 1 N D i = 1 p A i + p T i q 0 1 i 1 N D i = 1 q B i + q C i A D
72 63 71 bitr4di N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N T 𝔼 N D Btwn A T D Btwn B C A D p 0 1 q 0 1 i 1 N D i = 1 p A i + p T i D i = 1 q B i + q C i A D
73 simpl22 N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N T 𝔼 N x 𝔼 N y 𝔼 N B 𝔼 N
74 simpl21 N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N T 𝔼 N x 𝔼 N y 𝔼 N A 𝔼 N
75 simprl N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N T 𝔼 N x 𝔼 N y 𝔼 N x 𝔼 N
76 brbtwn B 𝔼 N A 𝔼 N x 𝔼 N B Btwn A x r 0 1 i 1 N B i = 1 r A i + r x i
77 73 74 75 76 syl3anc N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N T 𝔼 N x 𝔼 N y 𝔼 N B Btwn A x r 0 1 i 1 N B i = 1 r A i + r x i
78 simpl23 N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N T 𝔼 N x 𝔼 N y 𝔼 N C 𝔼 N
79 simprr N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N T 𝔼 N x 𝔼 N y 𝔼 N y 𝔼 N
80 brbtwn C 𝔼 N A 𝔼 N y 𝔼 N C Btwn A y s 0 1 i 1 N C i = 1 s A i + s y i
81 78 74 79 80 syl3anc N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N T 𝔼 N x 𝔼 N y 𝔼 N C Btwn A y s 0 1 i 1 N C i = 1 s A i + s y i
82 simpl3r N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N T 𝔼 N x 𝔼 N y 𝔼 N T 𝔼 N
83 brbtwn T 𝔼 N x 𝔼 N y 𝔼 N T Btwn x y u 0 1 i 1 N T i = 1 u x i + u y i
84 82 75 79 83 syl3anc N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N T 𝔼 N x 𝔼 N y 𝔼 N T Btwn x y u 0 1 i 1 N T i = 1 u x i + u y i
85 77 81 84 3anbi123d N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N T 𝔼 N x 𝔼 N y 𝔼 N B Btwn A x C Btwn A y T Btwn x y r 0 1 i 1 N B i = 1 r A i + r x i s 0 1 i 1 N C i = 1 s A i + s y i u 0 1 i 1 N T i = 1 u x i + u y i
86 r19.26-3 i 1 N B i = 1 r A i + r x i C i = 1 s A i + s y i T i = 1 u x i + u y i i 1 N B i = 1 r A i + r x i i 1 N C i = 1 s A i + s y i i 1 N T i = 1 u x i + u y i
87 86 rexbii u 0 1 i 1 N B i = 1 r A i + r x i C i = 1 s A i + s y i T i = 1 u x i + u y i u 0 1 i 1 N B i = 1 r A i + r x i i 1 N C i = 1 s A i + s y i i 1 N T i = 1 u x i + u y i
88 87 2rexbii r 0 1 s 0 1 u 0 1 i 1 N B i = 1 r A i + r x i C i = 1 s A i + s y i T i = 1 u x i + u y i r 0 1 s 0 1 u 0 1 i 1 N B i = 1 r A i + r x i i 1 N C i = 1 s A i + s y i i 1 N T i = 1 u x i + u y i
89 3reeanv r 0 1 s 0 1 u 0 1 i 1 N B i = 1 r A i + r x i i 1 N C i = 1 s A i + s y i i 1 N T i = 1 u x i + u y i r 0 1 i 1 N B i = 1 r A i + r x i s 0 1 i 1 N C i = 1 s A i + s y i u 0 1 i 1 N T i = 1 u x i + u y i
90 88 89 bitri r 0 1 s 0 1 u 0 1 i 1 N B i = 1 r A i + r x i C i = 1 s A i + s y i T i = 1 u x i + u y i r 0 1 i 1 N B i = 1 r A i + r x i s 0 1 i 1 N C i = 1 s A i + s y i u 0 1 i 1 N T i = 1 u x i + u y i
91 85 90 bitr4di N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N T 𝔼 N x 𝔼 N y 𝔼 N B Btwn A x C Btwn A y T Btwn x y r 0 1 s 0 1 u 0 1 i 1 N B i = 1 r A i + r x i C i = 1 s A i + s y i T i = 1 u x i + u y i
92 91 2rexbidva N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N T 𝔼 N x 𝔼 N y 𝔼 N B Btwn A x C Btwn A y T Btwn x y x 𝔼 N y 𝔼 N r 0 1 s 0 1 u 0 1 i 1 N B i = 1 r A i + r x i C i = 1 s A i + s y i T i = 1 u x i + u y i
93 56 72 92 3imtr4d N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N T 𝔼 N D Btwn A T D Btwn B C A D x 𝔼 N y 𝔼 N B Btwn A x C Btwn A y T Btwn x y