Metamath Proof Explorer


Theorem baerlem5alem1

Description: Lemma for baerlem5a . (Contributed by NM, 13-Apr-2015)

Ref Expression
Hypotheses baerlem3.v V=BaseW
baerlem3.m -˙=-W
baerlem3.o 0˙=0W
baerlem3.s ˙=LSSumW
baerlem3.n N=LSpanW
baerlem3.w φWLVec
baerlem3.x φXV
baerlem3.c φ¬XNYZ
baerlem3.d φNYNZ
baerlem3.y φYV0˙
baerlem3.z φZV0˙
baerlem3.p +˙=+W
baerlem3.t ·˙=W
baerlem3.r R=ScalarW
baerlem3.b B=BaseR
baerlem3.a ˙=+R
baerlem3.l L=-R
baerlem3.q Q=0R
baerlem3.i I=invgR
baerlem5a.a1 φaB
baerlem5a.b1 φbB
baerlem5a.d1 φdB
baerlem5a.e1 φeB
baerlem5a.j1 φj=a·˙X-˙Y+˙b·˙Z
baerlem5a.j2 φj=d·˙X-˙Z+˙e·˙Y
Assertion baerlem5alem1 φj=a·˙X-˙Y+˙Z

Proof

Step Hyp Ref Expression
1 baerlem3.v V=BaseW
2 baerlem3.m -˙=-W
3 baerlem3.o 0˙=0W
4 baerlem3.s ˙=LSSumW
5 baerlem3.n N=LSpanW
6 baerlem3.w φWLVec
7 baerlem3.x φXV
8 baerlem3.c φ¬XNYZ
9 baerlem3.d φNYNZ
10 baerlem3.y φYV0˙
11 baerlem3.z φZV0˙
12 baerlem3.p +˙=+W
13 baerlem3.t ·˙=W
14 baerlem3.r R=ScalarW
15 baerlem3.b B=BaseR
16 baerlem3.a ˙=+R
17 baerlem3.l L=-R
18 baerlem3.q Q=0R
19 baerlem3.i I=invgR
20 baerlem5a.a1 φaB
21 baerlem5a.b1 φbB
22 baerlem5a.d1 φdB
23 baerlem5a.e1 φeB
24 baerlem5a.j1 φj=a·˙X-˙Y+˙b·˙Z
25 baerlem5a.j2 φj=d·˙X-˙Z+˙e·˙Y
26 lveclmod WLVecWLMod
27 6 26 syl φWLMod
28 10 eldifad φYV
29 1 13 14 15 2 27 20 7 28 lmodsubdi φa·˙X-˙Y=a·˙X-˙a·˙Y
30 1 14 13 15 lmodvscl WLModaBXVa·˙XV
31 27 20 7 30 syl3anc φa·˙XV
32 1 12 2 13 14 15 19 27 20 31 28 lmodsubvs φa·˙X-˙a·˙Y=a·˙X+˙Ia·˙Y
33 29 32 eqtrd φa·˙X-˙Y=a·˙X+˙Ia·˙Y
34 33 oveq1d φa·˙X-˙Y+˙b·˙Z=a·˙X+˙Ia·˙Y+˙b·˙Z
35 14 lmodring WLModRRing
36 ringgrp RRingRGrp
37 27 35 36 3syl φRGrp
38 15 19 grpinvcl RGrpaBIaB
39 37 20 38 syl2anc φIaB
40 1 14 13 15 lmodvscl WLModIaBYVIa·˙YV
41 27 39 28 40 syl3anc φIa·˙YV
42 11 eldifad φZV
43 1 14 13 15 lmodvscl WLModbBZVb·˙ZV
44 27 21 42 43 syl3anc φb·˙ZV
45 1 12 lmodass WLModa·˙XVIa·˙YVb·˙ZVa·˙X+˙Ia·˙Y+˙b·˙Z=a·˙X+˙Ia·˙Y+˙b·˙Z
46 27 31 41 44 45 syl13anc φa·˙X+˙Ia·˙Y+˙b·˙Z=a·˙X+˙Ia·˙Y+˙b·˙Z
47 24 34 46 3eqtrd φj=a·˙X+˙Ia·˙Y+˙b·˙Z
48 1 12 lmodvacl WLModYVZVY+˙ZV
49 27 28 42 48 syl3anc φY+˙ZV
50 1 14 13 15 lmodvscl WLModaBY+˙ZVa·˙Y+˙ZV
51 27 20 49 50 syl3anc φa·˙Y+˙ZV
52 eqid invgW=invgW
53 1 12 52 2 grpsubval a·˙XVa·˙Y+˙ZVa·˙X-˙a·˙Y+˙Z=a·˙X+˙invgWa·˙Y+˙Z
54 31 51 53 syl2anc φa·˙X-˙a·˙Y+˙Z=a·˙X+˙invgWa·˙Y+˙Z
55 1 13 14 15 2 27 20 7 49 lmodsubdi φa·˙X-˙Y+˙Z=a·˙X-˙a·˙Y+˙Z
56 1 12 14 13 15 lmodvsdi WLModIaBYVZVIa·˙Y+˙Z=Ia·˙Y+˙Ia·˙Z
57 27 39 28 42 56 syl13anc φIa·˙Y+˙Z=Ia·˙Y+˙Ia·˙Z
58 1 14 13 52 15 19 27 49 20 lmodvsneg φinvgWa·˙Y+˙Z=Ia·˙Y+˙Z
59 15 19 grpinvcl RGrpdBIdB
60 37 22 59 syl2anc φIdB
61 eqid LSubSpW=LSubSpW
62 1 61 5 27 28 42 lspprcl φNYZLSubSpW
63 1 12 13 14 15 5 27 39 21 28 42 lsppreli φIa·˙Y+˙b·˙ZNYZ
64 1 12 13 14 15 5 27 23 60 28 42 lsppreli φe·˙Y+˙Id·˙ZNYZ
65 1 13 14 15 2 27 22 7 42 lmodsubdi φd·˙X-˙Z=d·˙X-˙d·˙Z
66 1 14 13 15 lmodvscl WLModdBXVd·˙XV
67 27 22 7 66 syl3anc φd·˙XV
68 1 12 2 13 14 15 19 27 22 67 42 lmodsubvs φd·˙X-˙d·˙Z=d·˙X+˙Id·˙Z
69 65 68 eqtrd φd·˙X-˙Z=d·˙X+˙Id·˙Z
70 69 oveq1d φd·˙X-˙Z+˙e·˙Y=d·˙X+˙Id·˙Z+˙e·˙Y
71 lmodabl WLModWAbel
72 6 26 71 3syl φWAbel
73 1 14 13 15 lmodvscl WLModIdBZVId·˙ZV
74 27 60 42 73 syl3anc φId·˙ZV
75 1 14 13 15 lmodvscl WLModeBYVe·˙YV
76 27 23 28 75 syl3anc φe·˙YV
77 1 12 72 67 74 76 abl32 φd·˙X+˙Id·˙Z+˙e·˙Y=d·˙X+˙e·˙Y+˙Id·˙Z
78 1 12 lmodass WLModd·˙XVe·˙YVId·˙ZVd·˙X+˙e·˙Y+˙Id·˙Z=d·˙X+˙e·˙Y+˙Id·˙Z
79 27 67 76 74 78 syl13anc φd·˙X+˙e·˙Y+˙Id·˙Z=d·˙X+˙e·˙Y+˙Id·˙Z
80 70 77 79 3eqtrd φd·˙X-˙Z+˙e·˙Y=d·˙X+˙e·˙Y+˙Id·˙Z
81 25 47 80 3eqtr3d φa·˙X+˙Ia·˙Y+˙b·˙Z=d·˙X+˙e·˙Y+˙Id·˙Z
82 1 12 14 15 13 61 6 62 7 8 63 64 20 22 81 lvecindp φa=dIa·˙Y+˙b·˙Z=e·˙Y+˙Id·˙Z
83 82 simprd φIa·˙Y+˙b·˙Z=e·˙Y+˙Id·˙Z
84 1 12 14 15 13 3 5 6 10 11 39 21 23 60 9 83 lvecindp2 φIa=eb=Id
85 84 simprd φb=Id
86 82 simpld φa=d
87 86 fveq2d φIa=Id
88 85 87 eqtr4d φb=Ia
89 88 oveq1d φb·˙Z=Ia·˙Z
90 89 oveq2d φIa·˙Y+˙b·˙Z=Ia·˙Y+˙Ia·˙Z
91 57 58 90 3eqtr4rd φIa·˙Y+˙b·˙Z=invgWa·˙Y+˙Z
92 91 oveq2d φa·˙X+˙Ia·˙Y+˙b·˙Z=a·˙X+˙invgWa·˙Y+˙Z
93 54 55 92 3eqtr4rd φa·˙X+˙Ia·˙Y+˙b·˙Z=a·˙X-˙Y+˙Z
94 47 93 eqtrd φj=a·˙X-˙Y+˙Z