Metamath Proof Explorer


Theorem cantnflem1b

Description: Lemma for cantnf . (Contributed by Mario Carneiro, 4-Jun-2015) (Revised by AV, 2-Jul-2019)

Ref Expression
Hypotheses cantnfs.s S=domACNFB
cantnfs.a φAOn
cantnfs.b φBOn
oemapval.t T=xy|zBxzyzwBzwxw=yw
oemapval.f φFS
oemapval.g φGS
oemapvali.r φFTG
oemapvali.x X=cB|FcGc
cantnflem1.o O=OrdIsoEGsupp
Assertion cantnflem1b φsucudomOO-1XuXOu

Proof

Step Hyp Ref Expression
1 cantnfs.s S=domACNFB
2 cantnfs.a φAOn
3 cantnfs.b φBOn
4 oemapval.t T=xy|zBxzyzwBzwxw=yw
5 oemapval.f φFS
6 oemapval.g φGS
7 oemapvali.r φFTG
8 oemapvali.x X=cB|FcGc
9 cantnflem1.o O=OrdIsoEGsupp
10 simprr φsucudomOO-1XuO-1Xu
11 9 oicl OrddomO
12 ovexd φGsuppV
13 1 2 3 9 6 cantnfcl φEWesuppGdomOω
14 13 simpld φEWesuppG
15 9 oiiso GsuppVEWesuppGOIsomE,EdomOGsupp
16 12 14 15 syl2anc φOIsomE,EdomOGsupp
17 isof1o OIsomE,EdomOGsuppO:domO1-1 ontoGsupp
18 16 17 syl φO:domO1-1 ontoGsupp
19 f1ocnv O:domO1-1 ontoGsuppO-1:Gsupp1-1 ontodomO
20 f1of O-1:Gsupp1-1 ontodomOO-1:GsuppdomO
21 18 19 20 3syl φO-1:GsuppdomO
22 1 2 3 4 5 6 7 8 cantnflem1a φXsuppG
23 21 22 ffvelcdmd φO-1XdomO
24 ordelon OrddomOO-1XdomOO-1XOn
25 11 23 24 sylancr φO-1XOn
26 11 a1i φOrddomO
27 ordelon OrddomOsucudomOsucuOn
28 26 27 sylan φsucudomOsucuOn
29 onsucb uOnsucuOn
30 28 29 sylibr φsucudomOuOn
31 30 adantrr φsucudomOO-1XuuOn
32 ontri1 O-1XOnuOnO-1Xu¬uO-1X
33 25 31 32 syl2an2r φsucudomOO-1XuO-1Xu¬uO-1X
34 10 33 mpbid φsucudomOO-1Xu¬uO-1X
35 16 adantr φsucudomOO-1XuOIsomE,EdomOGsupp
36 ordtr OrddomOTrdomO
37 11 36 mp1i φsucudomOO-1XuTrdomO
38 simprl φsucudomOO-1XusucudomO
39 trsuc TrdomOsucudomOudomO
40 37 38 39 syl2anc φsucudomOO-1XuudomO
41 23 adantr φsucudomOO-1XuO-1XdomO
42 isorel OIsomE,EdomOGsuppudomOO-1XdomOuEO-1XOuEOO-1X
43 35 40 41 42 syl12anc φsucudomOO-1XuuEO-1XOuEOO-1X
44 fvex O-1XV
45 44 epeli uEO-1XuO-1X
46 fvex OO-1XV
47 46 epeli OuEOO-1XOuOO-1X
48 43 45 47 3bitr3g φsucudomOO-1XuuO-1XOuOO-1X
49 f1ocnvfv2 O:domO1-1 ontoGsuppXsuppGOO-1X=X
50 18 22 49 syl2anc φOO-1X=X
51 50 adantr φsucudomOO-1XuOO-1X=X
52 51 eleq2d φsucudomOO-1XuOuOO-1XOuX
53 48 52 bitrd φsucudomOO-1XuuO-1XOuX
54 34 53 mtbid φsucudomOO-1Xu¬OuX
55 1 2 3 4 5 6 7 8 oemapvali φXBFXGXwBXwFw=Gw
56 55 simp1d φXB
57 onelon BOnXBXOn
58 3 56 57 syl2anc φXOn
59 suppssdm GsuppdomG
60 1 2 3 cantnfs φGSG:BAfinSuppG
61 6 60 mpbid φG:BAfinSuppG
62 61 simpld φG:BA
63 59 62 fssdm φGsuppB
64 63 adantr φsucudomOO-1XuGsuppB
65 9 oif O:domOGsupp
66 65 ffvelcdmi udomOOusuppG
67 40 66 syl φsucudomOO-1XuOusuppG
68 64 67 sseldd φsucudomOO-1XuOuB
69 onelon BOnOuBOuOn
70 3 68 69 syl2an2r φsucudomOO-1XuOuOn
71 ontri1 XOnOuOnXOu¬OuX
72 58 70 71 syl2an2r φsucudomOO-1XuXOu¬OuX
73 54 72 mpbird φsucudomOO-1XuXOu