| Step |
Hyp |
Ref |
Expression |
| 1 |
|
cantnfs.s |
|
| 2 |
|
cantnfs.a |
|
| 3 |
|
cantnfs.b |
|
| 4 |
|
oemapval.t |
|
| 5 |
|
oemapval.f |
|
| 6 |
|
oemapval.g |
|
| 7 |
|
oemapvali.r |
|
| 8 |
|
oemapvali.x |
|
| 9 |
|
cantnflem1.o |
|
| 10 |
|
simprr |
|
| 11 |
9
|
oicl |
|
| 12 |
|
ovexd |
|
| 13 |
1 2 3 9 6
|
cantnfcl |
|
| 14 |
13
|
simpld |
|
| 15 |
9
|
oiiso |
|
| 16 |
12 14 15
|
syl2anc |
|
| 17 |
|
isof1o |
|
| 18 |
16 17
|
syl |
|
| 19 |
|
f1ocnv |
|
| 20 |
|
f1of |
|
| 21 |
18 19 20
|
3syl |
|
| 22 |
1 2 3 4 5 6 7 8
|
cantnflem1a |
|
| 23 |
21 22
|
ffvelcdmd |
|
| 24 |
|
ordelon |
|
| 25 |
11 23 24
|
sylancr |
|
| 26 |
11
|
a1i |
|
| 27 |
|
ordelon |
|
| 28 |
26 27
|
sylan |
|
| 29 |
|
onsucb |
|
| 30 |
28 29
|
sylibr |
|
| 31 |
30
|
adantrr |
|
| 32 |
|
ontri1 |
|
| 33 |
25 31 32
|
syl2an2r |
|
| 34 |
10 33
|
mpbid |
|
| 35 |
16
|
adantr |
|
| 36 |
|
ordtr |
|
| 37 |
11 36
|
mp1i |
|
| 38 |
|
simprl |
|
| 39 |
|
trsuc |
|
| 40 |
37 38 39
|
syl2anc |
|
| 41 |
23
|
adantr |
|
| 42 |
|
isorel |
|
| 43 |
35 40 41 42
|
syl12anc |
|
| 44 |
|
fvex |
|
| 45 |
44
|
epeli |
|
| 46 |
|
fvex |
|
| 47 |
46
|
epeli |
|
| 48 |
43 45 47
|
3bitr3g |
|
| 49 |
|
f1ocnvfv2 |
|
| 50 |
18 22 49
|
syl2anc |
|
| 51 |
50
|
adantr |
|
| 52 |
51
|
eleq2d |
|
| 53 |
48 52
|
bitrd |
|
| 54 |
34 53
|
mtbid |
|
| 55 |
1 2 3 4 5 6 7 8
|
oemapvali |
|
| 56 |
55
|
simp1d |
|
| 57 |
|
onelon |
|
| 58 |
3 56 57
|
syl2anc |
|
| 59 |
|
suppssdm |
|
| 60 |
1 2 3
|
cantnfs |
|
| 61 |
6 60
|
mpbid |
|
| 62 |
61
|
simpld |
|
| 63 |
59 62
|
fssdm |
|
| 64 |
63
|
adantr |
|
| 65 |
9
|
oif |
|
| 66 |
65
|
ffvelcdmi |
|
| 67 |
40 66
|
syl |
|
| 68 |
64 67
|
sseldd |
|
| 69 |
|
onelon |
|
| 70 |
3 68 69
|
syl2an2r |
|
| 71 |
|
ontri1 |
|
| 72 |
58 70 71
|
syl2an2r |
|
| 73 |
54 72
|
mpbird |
|