Description: Lemma for cantnf . Here we show existence of Cantor normal forms. Assuming (by transfinite induction) that every number less than C has a normal form, we can use oeeu to factor C into the form ( ( A ^o X ) .o Y ) +o Z where 0 < Y < A and Z < ( A ^o X ) (and a fortiori X < B ). Then since Z < ( A ^o X ) <_ ( A ^o X ) .o Y <_ C , Z has a normal form, and by appending the term ( A ^o X ) .o Y using cantnfp1 we get a normal form for C . (Contributed by Mario Carneiro, 28-May-2015)
Ref | Expression | ||
---|---|---|---|
Hypotheses | cantnfs.s | |
|
cantnfs.a | |
||
cantnfs.b | |
||
oemapval.t | |
||
cantnf.c | |
||
cantnf.s | |
||
cantnf.e | |
||
cantnf.x | |
||
cantnf.p | |
||
cantnf.y | |
||
cantnf.z | |
||
cantnf.g | |
||
cantnf.v | |
||
cantnf.f | |
||
Assertion | cantnflem3 | |