Metamath Proof Explorer


Theorem cantnflem3

Description: Lemma for cantnf . Here we show existence of Cantor normal forms. Assuming (by transfinite induction) that every number less than C has a normal form, we can use oeeu to factor C into the form ( ( A ^o X ) .o Y ) +o Z where 0 < Y < A and Z < ( A ^o X ) (and a fortiori X < B ). Then since Z < ( A ^o X ) <_ ( A ^o X ) .o Y <_ C , Z has a normal form, and by appending the term ( A ^o X ) .o Y using cantnfp1 we get a normal form for C . (Contributed by Mario Carneiro, 28-May-2015)

Ref Expression
Hypotheses cantnfs.s S=domACNFB
cantnfs.a φAOn
cantnfs.b φBOn
oemapval.t T=xy|zBxzyzwBzwxw=yw
cantnf.c φCA𝑜B
cantnf.s φCranACNFB
cantnf.e φC
cantnf.x X=cOn|CA𝑜c
cantnf.p P=ιd|aOnbA𝑜Xd=abA𝑜X𝑜a+𝑜b=C
cantnf.y Y=1stP
cantnf.z Z=2ndP
cantnf.g φGS
cantnf.v φACNFBG=Z
cantnf.f F=tBift=XYGt
Assertion cantnflem3 φCranACNFB

Proof

Step Hyp Ref Expression
1 cantnfs.s S=domACNFB
2 cantnfs.a φAOn
3 cantnfs.b φBOn
4 oemapval.t T=xy|zBxzyzwBzwxw=yw
5 cantnf.c φCA𝑜B
6 cantnf.s φCranACNFB
7 cantnf.e φC
8 cantnf.x X=cOn|CA𝑜c
9 cantnf.p P=ιd|aOnbA𝑜Xd=abA𝑜X𝑜a+𝑜b=C
10 cantnf.y Y=1stP
11 cantnf.z Z=2ndP
12 cantnf.g φGS
13 cantnf.v φACNFBG=Z
14 cantnf.f F=tBift=XYGt
15 1 2 3 4 5 6 7 cantnflem2 φAOn2𝑜COn1𝑜
16 eqid X=X
17 eqid Y=Y
18 eqid Z=Z
19 16 17 18 3pm3.2i X=XY=YZ=Z
20 8 9 10 11 oeeui AOn2𝑜COn1𝑜XOnYA1𝑜ZA𝑜XA𝑜X𝑜Y+𝑜Z=CX=XY=YZ=Z
21 19 20 mpbiri AOn2𝑜COn1𝑜XOnYA1𝑜ZA𝑜XA𝑜X𝑜Y+𝑜Z=C
22 15 21 syl φXOnYA1𝑜ZA𝑜XA𝑜X𝑜Y+𝑜Z=C
23 22 simpld φXOnYA1𝑜ZA𝑜X
24 23 simp1d φXOn
25 oecl AOnXOnA𝑜XOn
26 2 24 25 syl2anc φA𝑜XOn
27 23 simp2d φYA1𝑜
28 27 eldifad φYA
29 onelon AOnYAYOn
30 2 28 29 syl2anc φYOn
31 dif1o YA1𝑜YAY
32 31 simprbi YA1𝑜Y
33 27 32 syl φY
34 on0eln0 YOnYY
35 30 34 syl φYY
36 33 35 mpbird φY
37 omword1 A𝑜XOnYOnYA𝑜XA𝑜X𝑜Y
38 26 30 36 37 syl21anc φA𝑜XA𝑜X𝑜Y
39 omcl A𝑜XOnYOnA𝑜X𝑜YOn
40 26 30 39 syl2anc φA𝑜X𝑜YOn
41 23 simp3d φZA𝑜X
42 onelon A𝑜XOnZA𝑜XZOn
43 26 41 42 syl2anc φZOn
44 oaword1 A𝑜X𝑜YOnZOnA𝑜X𝑜YA𝑜X𝑜Y+𝑜Z
45 40 43 44 syl2anc φA𝑜X𝑜YA𝑜X𝑜Y+𝑜Z
46 22 simprd φA𝑜X𝑜Y+𝑜Z=C
47 45 46 sseqtrd φA𝑜X𝑜YC
48 38 47 sstrd φA𝑜XC
49 oecl AOnBOnA𝑜BOn
50 2 3 49 syl2anc φA𝑜BOn
51 ontr2 A𝑜XOnA𝑜BOnA𝑜XCCA𝑜BA𝑜XA𝑜B
52 26 50 51 syl2anc φA𝑜XCCA𝑜BA𝑜XA𝑜B
53 48 5 52 mp2and φA𝑜XA𝑜B
54 15 simpld φAOn2𝑜
55 oeord XOnBOnAOn2𝑜XBA𝑜XA𝑜B
56 24 3 54 55 syl3anc φXBA𝑜XA𝑜B
57 53 56 mpbird φXB
58 2 adantr φxsuppGAOn
59 3 adantr φxsuppGBOn
60 suppssdm GsuppdomG
61 1 2 3 cantnfs φGSG:BAfinSuppG
62 12 61 mpbid φG:BAfinSuppG
63 62 simpld φG:BA
64 60 63 fssdm φGsuppB
65 64 sselda φxsuppGxB
66 onelon BOnxBxOn
67 59 65 66 syl2anc φxsuppGxOn
68 oecl AOnxOnA𝑜xOn
69 58 67 68 syl2anc φxsuppGA𝑜xOn
70 63 adantr φxsuppGG:BA
71 70 65 ffvelcdmd φxsuppGGxA
72 onelon AOnGxAGxOn
73 58 71 72 syl2anc φxsuppGGxOn
74 63 ffnd φGFnB
75 7 elexd φV
76 elsuppfn GFnBBOnVxsuppGxBGx
77 74 3 75 76 syl3anc φxsuppGxBGx
78 77 simplbda φxsuppGGx
79 on0eln0 GxOnGxGx
80 73 79 syl φxsuppGGxGx
81 78 80 mpbird φxsuppGGx
82 omword1 A𝑜xOnGxOnGxA𝑜xA𝑜x𝑜Gx
83 69 73 81 82 syl21anc φxsuppGA𝑜xA𝑜x𝑜Gx
84 eqid OrdIsoEGsupp=OrdIsoEGsupp
85 12 adantr φxsuppGGS
86 eqid seqωkV,zVA𝑜OrdIsoEGsuppk𝑜GOrdIsoEGsuppk+𝑜z=seqωkV,zVA𝑜OrdIsoEGsuppk𝑜GOrdIsoEGsuppk+𝑜z
87 1 58 59 84 85 86 65 cantnfle φxsuppGA𝑜x𝑜GxACNFBG
88 13 adantr φxsuppGACNFBG=Z
89 87 88 sseqtrd φxsuppGA𝑜x𝑜GxZ
90 83 89 sstrd φxsuppGA𝑜xZ
91 41 adantr φxsuppGZA𝑜X
92 26 adantr φxsuppGA𝑜XOn
93 ontr2 A𝑜xOnA𝑜XOnA𝑜xZZA𝑜XA𝑜xA𝑜X
94 69 92 93 syl2anc φxsuppGA𝑜xZZA𝑜XA𝑜xA𝑜X
95 90 91 94 mp2and φxsuppGA𝑜xA𝑜X
96 24 adantr φxsuppGXOn
97 54 adantr φxsuppGAOn2𝑜
98 oeord xOnXOnAOn2𝑜xXA𝑜xA𝑜X
99 67 96 97 98 syl3anc φxsuppGxXA𝑜xA𝑜X
100 95 99 mpbird φxsuppGxX
101 100 ex φxsuppGxX
102 101 ssrdv φGsuppX
103 1 2 3 12 57 28 102 14 cantnfp1 φFSACNFBF=A𝑜X𝑜Y+𝑜ACNFBG
104 103 simprd φACNFBF=A𝑜X𝑜Y+𝑜ACNFBG
105 13 oveq2d φA𝑜X𝑜Y+𝑜ACNFBG=A𝑜X𝑜Y+𝑜Z
106 104 105 46 3eqtrd φACNFBF=C
107 1 2 3 cantnff φACNFB:SA𝑜B
108 107 ffnd φACNFBFnS
109 103 simpld φFS
110 fnfvelrn ACNFBFnSFSACNFBFranACNFB
111 108 109 110 syl2anc φACNFBFranACNFB
112 106 111 eqeltrrd φCranACNFB