Metamath Proof Explorer


Theorem caurcvg2

Description: A Cauchy sequence of real numbers converges, existence version. (Contributed by NM, 4-Apr-2005) (Revised by Mario Carneiro, 7-Sep-2014)

Ref Expression
Hypotheses caucvg.1 Z=M
caurcvg2.2 φFV
caurcvg2.3 φx+jZkjFkFkFj<x
Assertion caurcvg2 φFdom

Proof

Step Hyp Ref Expression
1 caucvg.1 Z=M
2 caurcvg2.2 φFV
3 caurcvg2.3 φx+jZkjFkFkFj<x
4 1rp 1+
5 4 ne0ii +
6 r19.2z +x+jZkjFkFkFj<xx+jZkjFkFkFj<x
7 5 3 6 sylancr φx+jZkjFkFkFj<x
8 simpl FkFkFj<xFk
9 8 ralimi kjFkFkFj<xkjFk
10 eqid j=j
11 simprr φjZkjFkkjFk
12 fveq2 k=nFk=Fn
13 12 eleq1d k=nFkFn
14 13 rspccva kjFknjFn
15 11 14 sylan φjZkjFknjFn
16 15 fmpttd φjZkjFknjFn:j
17 fveq2 j=mj=m
18 fveq2 j=mFj=Fm
19 18 oveq2d j=mFkFj=FkFm
20 19 fveq2d j=mFkFj=FkFm
21 20 breq1d j=mFkFj<xFkFm<x
22 21 anbi2d j=mFkFkFj<xFkFkFm<x
23 17 22 raleqbidv j=mkjFkFkFj<xkmFkFkFm<x
24 23 cbvrexvw jZkjFkFkFj<xmZkmFkFkFm<x
25 fveq2 k=iFk=Fi
26 25 eleq1d k=iFkFi
27 25 fvoveq1d k=iFkFm=FiFm
28 27 breq1d k=iFkFm<xFiFm<x
29 26 28 anbi12d k=iFkFkFm<xFiFiFm<x
30 29 cbvralvw kmFkFkFm<ximFiFiFm<x
31 recn FiFi
32 31 anim1i FiFiFm<xFiFiFm<x
33 32 ralimi imFiFiFm<ximFiFiFm<x
34 30 33 sylbi kmFkFkFm<ximFiFiFm<x
35 34 reximi mZkmFkFkFm<xmZimFiFiFm<x
36 24 35 sylbi jZkjFkFkFj<xmZimFiFiFm<x
37 36 ralimi x+jZkjFkFkFj<xx+mZimFiFiFm<x
38 3 37 syl φx+mZimFiFiFm<x
39 38 adantr φjZkjFkx+mZimFiFiFm<x
40 1 10 cau4 jZx+mZimFiFiFm<xx+mjimFiFiFm<x
41 40 ad2antrl φjZkjFkx+mZimFiFiFm<xx+mjimFiFiFm<x
42 39 41 mpbid φjZkjFkx+mjimFiFiFm<x
43 simpr FiFiFm<xFiFm<x
44 10 uztrn2 mjimij
45 fveq2 n=iFn=Fi
46 eqid njFn=njFn
47 fvex FiV
48 45 46 47 fvmpt ijnjFni=Fi
49 44 48 syl mjimnjFni=Fi
50 fveq2 n=mFn=Fm
51 fvex FmV
52 50 46 51 fvmpt mjnjFnm=Fm
53 52 adantr mjimnjFnm=Fm
54 49 53 oveq12d mjimnjFninjFnm=FiFm
55 54 fveq2d mjimnjFninjFnm=FiFm
56 55 breq1d mjimnjFninjFnm<xFiFm<x
57 43 56 imbitrrid mjimFiFiFm<xnjFninjFnm<x
58 57 ralimdva mjimFiFiFm<ximnjFninjFnm<x
59 58 reximia mjimFiFiFm<xmjimnjFninjFnm<x
60 59 ralimi x+mjimFiFiFm<xx+mjimnjFninjFnm<x
61 42 60 syl φjZkjFkx+mjimnjFninjFnm<x
62 10 16 61 caurcvg φjZkjFknjFnlim supnjFn
63 eluzelz jMj
64 63 1 eleq2s jZj
65 64 ad2antrl φjZkjFkj
66 2 adantr φjZkjFkFV
67 fveq2 n=kFn=Fk
68 67 cbvmptv njFn=kjFk
69 10 68 climmpt jFVFlim supnjFnnjFnlim supnjFn
70 65 66 69 syl2anc φjZkjFkFlim supnjFnnjFnlim supnjFn
71 62 70 mpbird φjZkjFkFlim supnjFn
72 climrel Rel
73 72 releldmi Flim supnjFnFdom
74 71 73 syl φjZkjFkFdom
75 74 expr φjZkjFkFdom
76 9 75 syl5 φjZkjFkFkFj<xFdom
77 76 rexlimdva φjZkjFkFkFj<xFdom
78 77 rexlimdvw φx+jZkjFkFkFj<xFdom
79 7 78 mpd φFdom