Metamath Proof Explorer


Theorem cayleyhamilton0

Description: The Cayley-Hamilton theorem: A matrix over a commutative ring "satisfies its own characteristic equation". This version of cayleyhamilton provides definitions not used in the theorem itself, but in its proof to make it clearer, more readable and shorter compared with a proof without them (see cayleyhamiltonALT )! (Contributed by AV, 25-Nov-2019) (Revised by AV, 15-Dec-2019)

Ref Expression
Hypotheses cayleyhamilton0.a A=NMatR
cayleyhamilton0.b B=BaseA
cayleyhamilton0.0 0˙=0A
cayleyhamilton0.1 1˙=1A
cayleyhamilton0.m ˙=A
cayleyhamilton0.e1 ×˙=mulGrpA
cayleyhamilton0.c C=NCharPlyMatR
cayleyhamilton0.k K=coe1CM
cayleyhamilton0.p P=Poly1R
cayleyhamilton0.y Y=NMatP
cayleyhamilton0.r ×˙=Y
cayleyhamilton0.s -˙=-Y
cayleyhamilton0.z Z=0Y
cayleyhamilton0.w W=BaseY
cayleyhamilton0.e2 E=mulGrpY
cayleyhamilton0.t T=NmatToPolyMatR
cayleyhamilton0.g G=n0ifn=0Z-˙TM×˙Tb0ifn=s+1Tbsifs+1<nZTbn1-˙TM×˙Tbn
cayleyhamilton0.u U=NcPolyMatToMatR
Assertion cayleyhamilton0 NFinRCRingMBAn0Kn˙n×˙M=0˙

Proof

Step Hyp Ref Expression
1 cayleyhamilton0.a A=NMatR
2 cayleyhamilton0.b B=BaseA
3 cayleyhamilton0.0 0˙=0A
4 cayleyhamilton0.1 1˙=1A
5 cayleyhamilton0.m ˙=A
6 cayleyhamilton0.e1 ×˙=mulGrpA
7 cayleyhamilton0.c C=NCharPlyMatR
8 cayleyhamilton0.k K=coe1CM
9 cayleyhamilton0.p P=Poly1R
10 cayleyhamilton0.y Y=NMatP
11 cayleyhamilton0.r ×˙=Y
12 cayleyhamilton0.s -˙=-Y
13 cayleyhamilton0.z Z=0Y
14 cayleyhamilton0.w W=BaseY
15 cayleyhamilton0.e2 E=mulGrpY
16 cayleyhamilton0.t T=NmatToPolyMatR
17 cayleyhamilton0.g G=n0ifn=0Z-˙TM×˙Tb0ifn=s+1Tbsifs+1<nZTbn1-˙TM×˙Tbn
18 cayleyhamilton0.u U=NcPolyMatToMatR
19 eqid CM=CM
20 1 2 9 10 11 12 13 16 7 19 17 14 4 5 18 6 15 cayhamlem4 NFinRCRingMBsbB0sAn0coe1CMn˙n×˙M=UYn0nETM×˙Gn
21 8 eqcomi coe1CM=K
22 21 a1i NFinRCRingMBsbB0sn0coe1CM=K
23 22 fveq1d NFinRCRingMBsbB0sn0coe1CMn=Kn
24 23 oveq1d NFinRCRingMBsbB0sn0coe1CMn˙n×˙M=Kn˙n×˙M
25 24 mpteq2dva NFinRCRingMBsbB0sn0coe1CMn˙n×˙M=n0Kn˙n×˙M
26 25 oveq2d NFinRCRingMBsbB0sAn0coe1CMn˙n×˙M=An0Kn˙n×˙M
27 26 eqeq1d NFinRCRingMBsbB0sAn0coe1CMn˙n×˙M=UYn0nETM×˙GnAn0Kn˙n×˙M=UYn0nETM×˙Gn
28 27 biimpa NFinRCRingMBsbB0sAn0coe1CMn˙n×˙M=UYn0nETM×˙GnAn0Kn˙n×˙M=UYn0nETM×˙Gn
29 oveq1 n=lnETM=lETM
30 fveq2 n=lGn=Gl
31 29 30 oveq12d n=lnETM×˙Gn=lETM×˙Gl
32 31 cbvmptv n0nETM×˙Gn=l0lETM×˙Gl
33 32 oveq2i Yn0nETM×˙Gn=Yl0lETM×˙Gl
34 1 2 9 10 11 12 13 16 17 15 cayhamlem1 NFinRCRingMBsbB0sYl0lETM×˙Gl=Z
35 33 34 eqtrid NFinRCRingMBsbB0sYn0nETM×˙Gn=Z
36 fveq2 Yn0nETM×˙Gn=ZUYn0nETM×˙Gn=UZ
37 crngring RCRingRRing
38 37 anim2i NFinRCRingNFinRRing
39 38 3adant3 NFinRCRingMBNFinRRing
40 eqid 0A=0A
41 1 18 9 10 40 13 m2cpminv0 NFinRRingUZ=0A
42 39 41 syl NFinRCRingMBUZ=0A
43 42 3 eqtr4di NFinRCRingMBUZ=0˙
44 43 adantr NFinRCRingMBsbB0sUZ=0˙
45 36 44 sylan9eqr NFinRCRingMBsbB0sYn0nETM×˙Gn=ZUYn0nETM×˙Gn=0˙
46 35 45 mpdan NFinRCRingMBsbB0sUYn0nETM×˙Gn=0˙
47 46 adantr NFinRCRingMBsbB0sAn0coe1CMn˙n×˙M=UYn0nETM×˙GnUYn0nETM×˙Gn=0˙
48 28 47 eqtrd NFinRCRingMBsbB0sAn0coe1CMn˙n×˙M=UYn0nETM×˙GnAn0Kn˙n×˙M=0˙
49 48 ex NFinRCRingMBsbB0sAn0coe1CMn˙n×˙M=UYn0nETM×˙GnAn0Kn˙n×˙M=0˙
50 49 rexlimdvva NFinRCRingMBsbB0sAn0coe1CMn˙n×˙M=UYn0nETM×˙GnAn0Kn˙n×˙M=0˙
51 20 50 mpd NFinRCRingMBAn0Kn˙n×˙M=0˙