Description: The Cayley-Hamilton theorem: A matrix over a commutative ring "satisfies its own characteristic equation". This version of cayleyhamilton provides definitions not used in the theorem itself, but in its proof to make it clearer, more readable and shorter compared with a proof without them (see cayleyhamiltonALT )! (Contributed by AV, 25-Nov-2019) (Revised by AV, 15-Dec-2019)
Ref | Expression | ||
---|---|---|---|
Hypotheses | cayleyhamilton0.a | |
|
cayleyhamilton0.b | |
||
cayleyhamilton0.0 | |
||
cayleyhamilton0.1 | |
||
cayleyhamilton0.m | |
||
cayleyhamilton0.e1 | |
||
cayleyhamilton0.c | |
||
cayleyhamilton0.k | |
||
cayleyhamilton0.p | |
||
cayleyhamilton0.y | |
||
cayleyhamilton0.r | |
||
cayleyhamilton0.s | |
||
cayleyhamilton0.z | |
||
cayleyhamilton0.w | |
||
cayleyhamilton0.e2 | |
||
cayleyhamilton0.t | |
||
cayleyhamilton0.g | |
||
cayleyhamilton0.u | |
||
Assertion | cayleyhamilton0 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cayleyhamilton0.a | |
|
2 | cayleyhamilton0.b | |
|
3 | cayleyhamilton0.0 | |
|
4 | cayleyhamilton0.1 | |
|
5 | cayleyhamilton0.m | |
|
6 | cayleyhamilton0.e1 | |
|
7 | cayleyhamilton0.c | |
|
8 | cayleyhamilton0.k | |
|
9 | cayleyhamilton0.p | |
|
10 | cayleyhamilton0.y | |
|
11 | cayleyhamilton0.r | |
|
12 | cayleyhamilton0.s | |
|
13 | cayleyhamilton0.z | |
|
14 | cayleyhamilton0.w | |
|
15 | cayleyhamilton0.e2 | |
|
16 | cayleyhamilton0.t | |
|
17 | cayleyhamilton0.g | |
|
18 | cayleyhamilton0.u | |
|
19 | eqid | |
|
20 | 1 2 9 10 11 12 13 16 7 19 17 14 4 5 18 6 15 | cayhamlem4 | |
21 | 8 | eqcomi | |
22 | 21 | a1i | |
23 | 22 | fveq1d | |
24 | 23 | oveq1d | |
25 | 24 | mpteq2dva | |
26 | 25 | oveq2d | |
27 | 26 | eqeq1d | |
28 | 27 | biimpa | |
29 | oveq1 | |
|
30 | fveq2 | |
|
31 | 29 30 | oveq12d | |
32 | 31 | cbvmptv | |
33 | 32 | oveq2i | |
34 | 1 2 9 10 11 12 13 16 17 15 | cayhamlem1 | |
35 | 33 34 | eqtrid | |
36 | fveq2 | |
|
37 | crngring | |
|
38 | 37 | anim2i | |
39 | 38 | 3adant3 | |
40 | eqid | |
|
41 | 1 18 9 10 40 13 | m2cpminv0 | |
42 | 39 41 | syl | |
43 | 42 3 | eqtr4di | |
44 | 43 | adantr | |
45 | 36 44 | sylan9eqr | |
46 | 35 45 | mpdan | |
47 | 46 | adantr | |
48 | 28 47 | eqtrd | |
49 | 48 | ex | |
50 | 49 | rexlimdvva | |
51 | 20 50 | mpd | |