Metamath Proof Explorer


Theorem cdjreui

Description: A member of the sum of disjoint subspaces has a unique decomposition. Part of Lemma 5 of Holland p. 1520. (Contributed by NM, 20-May-2005) (New usage is discouraged.)

Ref Expression
Hypotheses cdjreu.1 AS
cdjreu.2 BS
Assertion cdjreui CA+BAB=0∃!xAyBC=x+y

Proof

Step Hyp Ref Expression
1 cdjreu.1 AS
2 cdjreu.2 BS
3 1 2 shseli CA+BxAyBC=x+y
4 3 biimpi CA+BxAyBC=x+y
5 reeanv yBwBC=x+yC=z+wyBC=x+ywBC=z+w
6 eqtr2 C=x+yC=z+wx+y=z+w
7 1 sheli xAx
8 2 sheli yBy
9 7 8 anim12i xAyBxy
10 1 sheli zAz
11 2 sheli wBw
12 10 11 anim12i zAwBzw
13 hvaddsub4 xyzwx+y=z+wx-z=w-y
14 9 12 13 syl2an xAyBzAwBx+y=z+wx-z=w-y
15 14 an4s xAzAyBwBx+y=z+wx-z=w-y
16 15 adantll AB=0xAzAyBwBx+y=z+wx-z=w-y
17 shsubcl BSwByBw-yB
18 2 17 mp3an1 wByBw-yB
19 18 ancoms yBwBw-yB
20 eleq1 x-z=w-yx-zBw-yB
21 19 20 syl5ibrcom yBwBx-z=w-yx-zB
22 21 adantl xAzAyBwBx-z=w-yx-zB
23 shsubcl ASxAzAx-zA
24 1 23 mp3an1 xAzAx-zA
25 24 adantr xAzAyBwBx-zA
26 22 25 jctild xAzAyBwBx-z=w-yx-zAx-zB
27 26 adantll AB=0xAzAyBwBx-z=w-yx-zAx-zB
28 elin x-zABx-zAx-zB
29 eleq2 AB=0x-zABx-z0
30 28 29 bitr3id AB=0x-zAx-zBx-z0
31 30 ad2antrr AB=0xAzAyBwBx-zAx-zBx-z0
32 27 31 sylibd AB=0xAzAyBwBx-z=w-yx-z0
33 elch0 x-z0x-z=0
34 hvsubeq0 xzx-z=0x=z
35 33 34 bitrid xzx-z0x=z
36 7 10 35 syl2an xAzAx-z0x=z
37 36 ad2antlr AB=0xAzAyBwBx-z0x=z
38 32 37 sylibd AB=0xAzAyBwBx-z=w-yx=z
39 16 38 sylbid AB=0xAzAyBwBx+y=z+wx=z
40 6 39 syl5 AB=0xAzAyBwBC=x+yC=z+wx=z
41 40 rexlimdvva AB=0xAzAyBwBC=x+yC=z+wx=z
42 5 41 biimtrrid AB=0xAzAyBC=x+ywBC=z+wx=z
43 42 ralrimivva AB=0xAzAyBC=x+ywBC=z+wx=z
44 4 43 anim12i CA+BAB=0xAyBC=x+yxAzAyBC=x+ywBC=z+wx=z
45 oveq1 x=zx+y=z+y
46 45 eqeq2d x=zC=x+yC=z+y
47 46 rexbidv x=zyBC=x+yyBC=z+y
48 oveq2 y=wz+y=z+w
49 48 eqeq2d y=wC=z+yC=z+w
50 49 cbvrexvw yBC=z+ywBC=z+w
51 47 50 bitrdi x=zyBC=x+ywBC=z+w
52 51 reu4 ∃!xAyBC=x+yxAyBC=x+yxAzAyBC=x+ywBC=z+wx=z
53 44 52 sylibr CA+BAB=0∃!xAyBC=x+y