Description: A member of the sum of disjoint subspaces has a unique decomposition. Part of Lemma 5 of Holland p. 1520. (Contributed by NM, 20-May-2005) (New usage is discouraged.)
Ref | Expression | ||
---|---|---|---|
Hypotheses | cdjreu.1 | |
|
cdjreu.2 | |
||
Assertion | cdjreui | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cdjreu.1 | |
|
2 | cdjreu.2 | |
|
3 | 1 2 | shseli | |
4 | 3 | biimpi | |
5 | reeanv | |
|
6 | eqtr2 | |
|
7 | 1 | sheli | |
8 | 2 | sheli | |
9 | 7 8 | anim12i | |
10 | 1 | sheli | |
11 | 2 | sheli | |
12 | 10 11 | anim12i | |
13 | hvaddsub4 | |
|
14 | 9 12 13 | syl2an | |
15 | 14 | an4s | |
16 | 15 | adantll | |
17 | shsubcl | |
|
18 | 2 17 | mp3an1 | |
19 | 18 | ancoms | |
20 | eleq1 | |
|
21 | 19 20 | syl5ibrcom | |
22 | 21 | adantl | |
23 | shsubcl | |
|
24 | 1 23 | mp3an1 | |
25 | 24 | adantr | |
26 | 22 25 | jctild | |
27 | 26 | adantll | |
28 | elin | |
|
29 | eleq2 | |
|
30 | 28 29 | bitr3id | |
31 | 30 | ad2antrr | |
32 | 27 31 | sylibd | |
33 | elch0 | |
|
34 | hvsubeq0 | |
|
35 | 33 34 | bitrid | |
36 | 7 10 35 | syl2an | |
37 | 36 | ad2antlr | |
38 | 32 37 | sylibd | |
39 | 16 38 | sylbid | |
40 | 6 39 | syl5 | |
41 | 40 | rexlimdvva | |
42 | 5 41 | biimtrrid | |
43 | 42 | ralrimivva | |
44 | 4 43 | anim12i | |
45 | oveq1 | |
|
46 | 45 | eqeq2d | |
47 | 46 | rexbidv | |
48 | oveq2 | |
|
49 | 48 | eqeq2d | |
50 | 49 | cbvrexvw | |
51 | 47 50 | bitrdi | |
52 | 51 | reu4 | |
53 | 44 52 | sylibr | |