Metamath Proof Explorer


Theorem cdleme5

Description: Part of proof of Lemma E in Crawley p. 113. G represents f_s(r). We show r \/ f_s(r)) = p \/ q at the top of p. 114. (Contributed by NM, 7-Jun-2012)

Ref Expression
Hypotheses cdleme4.l ˙=K
cdleme4.j ˙=joinK
cdleme4.m ˙=meetK
cdleme4.a A=AtomsK
cdleme4.h H=LHypK
cdleme4.u U=P˙Q˙W
cdleme4.f F=S˙U˙Q˙P˙S˙W
cdleme4.g G=P˙Q˙F˙R˙S˙W
Assertion cdleme5 KHLWHPAQARA¬R˙WSA¬S˙WR˙P˙QR˙G=P˙Q

Proof

Step Hyp Ref Expression
1 cdleme4.l ˙=K
2 cdleme4.j ˙=joinK
3 cdleme4.m ˙=meetK
4 cdleme4.a A=AtomsK
5 cdleme4.h H=LHypK
6 cdleme4.u U=P˙Q˙W
7 cdleme4.f F=S˙U˙Q˙P˙S˙W
8 cdleme4.g G=P˙Q˙F˙R˙S˙W
9 8 oveq2i R˙G=R˙P˙Q˙F˙R˙S˙W
10 simp1l KHLWHPAQARA¬R˙WSA¬S˙WR˙P˙QKHL
11 simp23l KHLWHPAQARA¬R˙WSA¬S˙WR˙P˙QRA
12 simp21 KHLWHPAQARA¬R˙WSA¬S˙WR˙P˙QPA
13 simp22 KHLWHPAQARA¬R˙WSA¬S˙WR˙P˙QQA
14 eqid BaseK=BaseK
15 14 2 4 hlatjcl KHLPAQAP˙QBaseK
16 10 12 13 15 syl3anc KHLWHPAQARA¬R˙WSA¬S˙WR˙P˙QP˙QBaseK
17 10 hllatd KHLWHPAQARA¬R˙WSA¬S˙WR˙P˙QKLat
18 simp1 KHLWHPAQARA¬R˙WSA¬S˙WR˙P˙QKHLWH
19 simp3ll KHLWHPAQARA¬R˙WSA¬S˙WR˙P˙QSA
20 1 2 3 4 5 6 7 14 cdleme1b KHLWHPAQASAFBaseK
21 18 12 13 19 20 syl13anc KHLWHPAQARA¬R˙WSA¬S˙WR˙P˙QFBaseK
22 14 2 4 hlatjcl KHLRASAR˙SBaseK
23 10 11 19 22 syl3anc KHLWHPAQARA¬R˙WSA¬S˙WR˙P˙QR˙SBaseK
24 simp1r KHLWHPAQARA¬R˙WSA¬S˙WR˙P˙QWH
25 14 5 lhpbase WHWBaseK
26 24 25 syl KHLWHPAQARA¬R˙WSA¬S˙WR˙P˙QWBaseK
27 14 3 latmcl KLatR˙SBaseKWBaseKR˙S˙WBaseK
28 17 23 26 27 syl3anc KHLWHPAQARA¬R˙WSA¬S˙WR˙P˙QR˙S˙WBaseK
29 14 2 latjcl KLatFBaseKR˙S˙WBaseKF˙R˙S˙WBaseK
30 17 21 28 29 syl3anc KHLWHPAQARA¬R˙WSA¬S˙WR˙P˙QF˙R˙S˙WBaseK
31 simp3r KHLWHPAQARA¬R˙WSA¬S˙WR˙P˙QR˙P˙Q
32 14 1 2 3 4 atmod3i1 KHLRAP˙QBaseKF˙R˙S˙WBaseKR˙P˙QR˙P˙Q˙F˙R˙S˙W=P˙Q˙R˙F˙R˙S˙W
33 10 11 16 30 31 32 syl131anc KHLWHPAQARA¬R˙WSA¬S˙WR˙P˙QR˙P˙Q˙F˙R˙S˙W=P˙Q˙R˙F˙R˙S˙W
34 14 4 atbase SASBaseK
35 19 34 syl KHLWHPAQARA¬R˙WSA¬S˙WR˙P˙QSBaseK
36 14 1 2 latlej2 KLatSBaseKP˙QBaseKP˙Q˙S˙P˙Q
37 17 35 16 36 syl3anc KHLWHPAQARA¬R˙WSA¬S˙WR˙P˙QP˙Q˙S˙P˙Q
38 14 4 atbase RARBaseK
39 11 38 syl KHLWHPAQARA¬R˙WSA¬S˙WR˙P˙QRBaseK
40 14 2 latj12 KLatRBaseKFBaseKSBaseKR˙F˙S=F˙R˙S
41 17 39 21 35 40 syl13anc KHLWHPAQARA¬R˙WSA¬S˙WR˙P˙QR˙F˙S=F˙R˙S
42 1 2 3 4 5 6 14 cdleme0aa KHLWHPAQAUBaseK
43 18 12 13 42 syl3anc KHLWHPAQARA¬R˙WSA¬S˙WR˙P˙QUBaseK
44 14 2 latj12 KLatSBaseKRBaseKUBaseKS˙R˙U=R˙S˙U
45 17 35 39 43 44 syl13anc KHLWHPAQARA¬R˙WSA¬S˙WR˙P˙QS˙R˙U=R˙S˙U
46 1 2 3 4 5 6 cdleme4 KHLWHPAQARA¬R˙WR˙P˙QP˙Q=R˙U
47 46 3adant3l KHLWHPAQARA¬R˙WSA¬S˙WR˙P˙QP˙Q=R˙U
48 47 oveq2d KHLWHPAQARA¬R˙WSA¬S˙WR˙P˙QS˙P˙Q=S˙R˙U
49 14 2 latjcom KLatFBaseKSBaseKF˙S=S˙F
50 17 21 35 49 syl3anc KHLWHPAQARA¬R˙WSA¬S˙WR˙P˙QF˙S=S˙F
51 simp3l KHLWHPAQARA¬R˙WSA¬S˙WR˙P˙QSA¬S˙W
52 1 2 3 4 5 6 7 cdleme1 KHLWHPAQASA¬S˙WS˙F=S˙U
53 18 12 13 51 52 syl13anc KHLWHPAQARA¬R˙WSA¬S˙WR˙P˙QS˙F=S˙U
54 50 53 eqtrd KHLWHPAQARA¬R˙WSA¬S˙WR˙P˙QF˙S=S˙U
55 54 oveq2d KHLWHPAQARA¬R˙WSA¬S˙WR˙P˙QR˙F˙S=R˙S˙U
56 45 48 55 3eqtr4d KHLWHPAQARA¬R˙WSA¬S˙WR˙P˙QS˙P˙Q=R˙F˙S
57 1 2 4 hlatlej1 KHLRASAR˙R˙S
58 10 11 19 57 syl3anc KHLWHPAQARA¬R˙WSA¬S˙WR˙P˙QR˙R˙S
59 14 1 2 3 4 atmod3i1 KHLRAR˙SBaseKWBaseKR˙R˙SR˙R˙S˙W=R˙S˙R˙W
60 10 11 23 26 58 59 syl131anc KHLWHPAQARA¬R˙WSA¬S˙WR˙P˙QR˙R˙S˙W=R˙S˙R˙W
61 simp23r KHLWHPAQARA¬R˙WSA¬S˙WR˙P˙Q¬R˙W
62 eqid 1.K=1.K
63 1 2 62 4 5 lhpjat2 KHLWHRA¬R˙WR˙W=1.K
64 18 11 61 63 syl12anc KHLWHPAQARA¬R˙WSA¬S˙WR˙P˙QR˙W=1.K
65 64 oveq2d KHLWHPAQARA¬R˙WSA¬S˙WR˙P˙QR˙S˙R˙W=R˙S˙1.K
66 hlol KHLKOL
67 10 66 syl KHLWHPAQARA¬R˙WSA¬S˙WR˙P˙QKOL
68 14 3 62 olm11 KOLR˙SBaseKR˙S˙1.K=R˙S
69 67 23 68 syl2anc KHLWHPAQARA¬R˙WSA¬S˙WR˙P˙QR˙S˙1.K=R˙S
70 65 69 eqtrd KHLWHPAQARA¬R˙WSA¬S˙WR˙P˙QR˙S˙R˙W=R˙S
71 60 70 eqtrd KHLWHPAQARA¬R˙WSA¬S˙WR˙P˙QR˙R˙S˙W=R˙S
72 71 oveq2d KHLWHPAQARA¬R˙WSA¬S˙WR˙P˙QF˙R˙R˙S˙W=F˙R˙S
73 41 56 72 3eqtr4d KHLWHPAQARA¬R˙WSA¬S˙WR˙P˙QS˙P˙Q=F˙R˙R˙S˙W
74 14 2 latj12 KLatFBaseKRBaseKR˙S˙WBaseKF˙R˙R˙S˙W=R˙F˙R˙S˙W
75 17 21 39 28 74 syl13anc KHLWHPAQARA¬R˙WSA¬S˙WR˙P˙QF˙R˙R˙S˙W=R˙F˙R˙S˙W
76 73 75 eqtrd KHLWHPAQARA¬R˙WSA¬S˙WR˙P˙QS˙P˙Q=R˙F˙R˙S˙W
77 37 76 breqtrd KHLWHPAQARA¬R˙WSA¬S˙WR˙P˙QP˙Q˙R˙F˙R˙S˙W
78 14 2 latjcl KLatRBaseKF˙R˙S˙WBaseKR˙F˙R˙S˙WBaseK
79 17 39 30 78 syl3anc KHLWHPAQARA¬R˙WSA¬S˙WR˙P˙QR˙F˙R˙S˙WBaseK
80 14 1 3 latleeqm1 KLatP˙QBaseKR˙F˙R˙S˙WBaseKP˙Q˙R˙F˙R˙S˙WP˙Q˙R˙F˙R˙S˙W=P˙Q
81 17 16 79 80 syl3anc KHLWHPAQARA¬R˙WSA¬S˙WR˙P˙QP˙Q˙R˙F˙R˙S˙WP˙Q˙R˙F˙R˙S˙W=P˙Q
82 77 81 mpbid KHLWHPAQARA¬R˙WSA¬S˙WR˙P˙QP˙Q˙R˙F˙R˙S˙W=P˙Q
83 33 82 eqtrd KHLWHPAQARA¬R˙WSA¬S˙WR˙P˙QR˙P˙Q˙F˙R˙S˙W=P˙Q
84 9 83 eqtrid KHLWHPAQARA¬R˙WSA¬S˙WR˙P˙QR˙G=P˙Q