Metamath Proof Explorer


Theorem cdleme9

Description: Part of proof of Lemma E in Crawley p. 113, 2nd paragraph on p. 114. C and F represent s_1 and f(s) respectively. In their notation, we prove f(s) \/ s_1 = q \/ s_1. (Contributed by NM, 10-Jun-2012)

Ref Expression
Hypotheses cdleme9.l ˙ = K
cdleme9.j ˙ = join K
cdleme9.m ˙ = meet K
cdleme9.a A = Atoms K
cdleme9.h H = LHyp K
cdleme9.u U = P ˙ Q ˙ W
cdleme9.f F = S ˙ U ˙ Q ˙ P ˙ S ˙ W
cdleme9.c C = P ˙ S ˙ W
Assertion cdleme9 K HL W H P A ¬ P ˙ W Q A S A ¬ S ˙ W ¬ S ˙ P ˙ Q F ˙ C = Q ˙ C

Proof

Step Hyp Ref Expression
1 cdleme9.l ˙ = K
2 cdleme9.j ˙ = join K
3 cdleme9.m ˙ = meet K
4 cdleme9.a A = Atoms K
5 cdleme9.h H = LHyp K
6 cdleme9.u U = P ˙ Q ˙ W
7 cdleme9.f F = S ˙ U ˙ Q ˙ P ˙ S ˙ W
8 cdleme9.c C = P ˙ S ˙ W
9 1 2 3 4 5 6 7 8 cdleme3d F = S ˙ U ˙ Q ˙ C
10 9 oveq1i F ˙ C = S ˙ U ˙ Q ˙ C ˙ C
11 simp1l K HL W H P A ¬ P ˙ W Q A S A ¬ S ˙ W ¬ S ˙ P ˙ Q K HL
12 simp1 K HL W H P A ¬ P ˙ W Q A S A ¬ S ˙ W ¬ S ˙ P ˙ Q K HL W H
13 simp21 K HL W H P A ¬ P ˙ W Q A S A ¬ S ˙ W ¬ S ˙ P ˙ Q P A ¬ P ˙ W
14 simp23l K HL W H P A ¬ P ˙ W Q A S A ¬ S ˙ W ¬ S ˙ P ˙ Q S A
15 11 hllatd K HL W H P A ¬ P ˙ W Q A S A ¬ S ˙ W ¬ S ˙ P ˙ Q K Lat
16 eqid Base K = Base K
17 16 4 atbase S A S Base K
18 14 17 syl K HL W H P A ¬ P ˙ W Q A S A ¬ S ˙ W ¬ S ˙ P ˙ Q S Base K
19 simp21l K HL W H P A ¬ P ˙ W Q A S A ¬ S ˙ W ¬ S ˙ P ˙ Q P A
20 16 4 atbase P A P Base K
21 19 20 syl K HL W H P A ¬ P ˙ W Q A S A ¬ S ˙ W ¬ S ˙ P ˙ Q P Base K
22 simp22 K HL W H P A ¬ P ˙ W Q A S A ¬ S ˙ W ¬ S ˙ P ˙ Q Q A
23 16 4 atbase Q A Q Base K
24 22 23 syl K HL W H P A ¬ P ˙ W Q A S A ¬ S ˙ W ¬ S ˙ P ˙ Q Q Base K
25 simp3 K HL W H P A ¬ P ˙ W Q A S A ¬ S ˙ W ¬ S ˙ P ˙ Q ¬ S ˙ P ˙ Q
26 16 1 2 latnlej1l K Lat S Base K P Base K Q Base K ¬ S ˙ P ˙ Q S P
27 26 necomd K Lat S Base K P Base K Q Base K ¬ S ˙ P ˙ Q P S
28 15 18 21 24 25 27 syl131anc K HL W H P A ¬ P ˙ W Q A S A ¬ S ˙ W ¬ S ˙ P ˙ Q P S
29 1 2 3 4 5 8 cdleme9a K HL W H P A ¬ P ˙ W S A P S C A
30 12 13 14 28 29 syl112anc K HL W H P A ¬ P ˙ W Q A S A ¬ S ˙ W ¬ S ˙ P ˙ Q C A
31 1 2 3 4 5 6 16 cdleme0aa K HL W H P A Q A U Base K
32 12 19 22 31 syl3anc K HL W H P A ¬ P ˙ W Q A S A ¬ S ˙ W ¬ S ˙ P ˙ Q U Base K
33 16 2 latjcl K Lat S Base K U Base K S ˙ U Base K
34 15 18 32 33 syl3anc K HL W H P A ¬ P ˙ W Q A S A ¬ S ˙ W ¬ S ˙ P ˙ Q S ˙ U Base K
35 16 2 4 hlatjcl K HL Q A C A Q ˙ C Base K
36 11 22 30 35 syl3anc K HL W H P A ¬ P ˙ W Q A S A ¬ S ˙ W ¬ S ˙ P ˙ Q Q ˙ C Base K
37 1 2 4 hlatlej2 K HL Q A C A C ˙ Q ˙ C
38 11 22 30 37 syl3anc K HL W H P A ¬ P ˙ W Q A S A ¬ S ˙ W ¬ S ˙ P ˙ Q C ˙ Q ˙ C
39 16 1 2 3 4 atmod4i1 K HL C A S ˙ U Base K Q ˙ C Base K C ˙ Q ˙ C S ˙ U ˙ Q ˙ C ˙ C = S ˙ U ˙ C ˙ Q ˙ C
40 11 30 34 36 38 39 syl131anc K HL W H P A ¬ P ˙ W Q A S A ¬ S ˙ W ¬ S ˙ P ˙ Q S ˙ U ˙ Q ˙ C ˙ C = S ˙ U ˙ C ˙ Q ˙ C
41 8 oveq2i S ˙ C = S ˙ P ˙ S ˙ W
42 16 2 4 hlatjcl K HL P A S A P ˙ S Base K
43 11 19 14 42 syl3anc K HL W H P A ¬ P ˙ W Q A S A ¬ S ˙ W ¬ S ˙ P ˙ Q P ˙ S Base K
44 simp1r K HL W H P A ¬ P ˙ W Q A S A ¬ S ˙ W ¬ S ˙ P ˙ Q W H
45 16 5 lhpbase W H W Base K
46 44 45 syl K HL W H P A ¬ P ˙ W Q A S A ¬ S ˙ W ¬ S ˙ P ˙ Q W Base K
47 1 2 4 hlatlej2 K HL P A S A S ˙ P ˙ S
48 11 19 14 47 syl3anc K HL W H P A ¬ P ˙ W Q A S A ¬ S ˙ W ¬ S ˙ P ˙ Q S ˙ P ˙ S
49 16 1 2 3 4 atmod3i1 K HL S A P ˙ S Base K W Base K S ˙ P ˙ S S ˙ P ˙ S ˙ W = P ˙ S ˙ S ˙ W
50 11 14 43 46 48 49 syl131anc K HL W H P A ¬ P ˙ W Q A S A ¬ S ˙ W ¬ S ˙ P ˙ Q S ˙ P ˙ S ˙ W = P ˙ S ˙ S ˙ W
51 simp23r K HL W H P A ¬ P ˙ W Q A S A ¬ S ˙ W ¬ S ˙ P ˙ Q ¬ S ˙ W
52 eqid 1. K = 1. K
53 1 2 52 4 5 lhpjat2 K HL W H S A ¬ S ˙ W S ˙ W = 1. K
54 12 14 51 53 syl12anc K HL W H P A ¬ P ˙ W Q A S A ¬ S ˙ W ¬ S ˙ P ˙ Q S ˙ W = 1. K
55 54 oveq2d K HL W H P A ¬ P ˙ W Q A S A ¬ S ˙ W ¬ S ˙ P ˙ Q P ˙ S ˙ S ˙ W = P ˙ S ˙ 1. K
56 hlol K HL K OL
57 11 56 syl K HL W H P A ¬ P ˙ W Q A S A ¬ S ˙ W ¬ S ˙ P ˙ Q K OL
58 16 3 52 olm11 K OL P ˙ S Base K P ˙ S ˙ 1. K = P ˙ S
59 57 43 58 syl2anc K HL W H P A ¬ P ˙ W Q A S A ¬ S ˙ W ¬ S ˙ P ˙ Q P ˙ S ˙ 1. K = P ˙ S
60 50 55 59 3eqtrrd K HL W H P A ¬ P ˙ W Q A S A ¬ S ˙ W ¬ S ˙ P ˙ Q P ˙ S = S ˙ P ˙ S ˙ W
61 41 60 eqtr4id K HL W H P A ¬ P ˙ W Q A S A ¬ S ˙ W ¬ S ˙ P ˙ Q S ˙ C = P ˙ S
62 61 oveq1d K HL W H P A ¬ P ˙ W Q A S A ¬ S ˙ W ¬ S ˙ P ˙ Q S ˙ C ˙ U = P ˙ S ˙ U
63 16 4 atbase C A C Base K
64 30 63 syl K HL W H P A ¬ P ˙ W Q A S A ¬ S ˙ W ¬ S ˙ P ˙ Q C Base K
65 16 2 latj32 K Lat S Base K U Base K C Base K S ˙ U ˙ C = S ˙ C ˙ U
66 15 18 32 64 65 syl13anc K HL W H P A ¬ P ˙ W Q A S A ¬ S ˙ W ¬ S ˙ P ˙ Q S ˙ U ˙ C = S ˙ C ˙ U
67 2 4 hlatj32 K HL P A S A Q A P ˙ S ˙ Q = P ˙ Q ˙ S
68 11 19 14 22 67 syl13anc K HL W H P A ¬ P ˙ W Q A S A ¬ S ˙ W ¬ S ˙ P ˙ Q P ˙ S ˙ Q = P ˙ Q ˙ S
69 16 2 latjcom K Lat Q Base K P ˙ S Base K Q ˙ P ˙ S = P ˙ S ˙ Q
70 15 24 43 69 syl3anc K HL W H P A ¬ P ˙ W Q A S A ¬ S ˙ W ¬ S ˙ P ˙ Q Q ˙ P ˙ S = P ˙ S ˙ Q
71 6 oveq2i P ˙ U = P ˙ P ˙ Q ˙ W
72 16 2 4 hlatjcl K HL P A Q A P ˙ Q Base K
73 11 19 22 72 syl3anc K HL W H P A ¬ P ˙ W Q A S A ¬ S ˙ W ¬ S ˙ P ˙ Q P ˙ Q Base K
74 1 2 4 hlatlej1 K HL P A Q A P ˙ P ˙ Q
75 11 19 22 74 syl3anc K HL W H P A ¬ P ˙ W Q A S A ¬ S ˙ W ¬ S ˙ P ˙ Q P ˙ P ˙ Q
76 16 1 2 3 4 atmod3i1 K HL P A P ˙ Q Base K W Base K P ˙ P ˙ Q P ˙ P ˙ Q ˙ W = P ˙ Q ˙ P ˙ W
77 11 19 73 46 75 76 syl131anc K HL W H P A ¬ P ˙ W Q A S A ¬ S ˙ W ¬ S ˙ P ˙ Q P ˙ P ˙ Q ˙ W = P ˙ Q ˙ P ˙ W
78 1 2 52 4 5 lhpjat2 K HL W H P A ¬ P ˙ W P ˙ W = 1. K
79 12 13 78 syl2anc K HL W H P A ¬ P ˙ W Q A S A ¬ S ˙ W ¬ S ˙ P ˙ Q P ˙ W = 1. K
80 79 oveq2d K HL W H P A ¬ P ˙ W Q A S A ¬ S ˙ W ¬ S ˙ P ˙ Q P ˙ Q ˙ P ˙ W = P ˙ Q ˙ 1. K
81 16 3 52 olm11 K OL P ˙ Q Base K P ˙ Q ˙ 1. K = P ˙ Q
82 57 73 81 syl2anc K HL W H P A ¬ P ˙ W Q A S A ¬ S ˙ W ¬ S ˙ P ˙ Q P ˙ Q ˙ 1. K = P ˙ Q
83 77 80 82 3eqtrd K HL W H P A ¬ P ˙ W Q A S A ¬ S ˙ W ¬ S ˙ P ˙ Q P ˙ P ˙ Q ˙ W = P ˙ Q
84 71 83 eqtrid K HL W H P A ¬ P ˙ W Q A S A ¬ S ˙ W ¬ S ˙ P ˙ Q P ˙ U = P ˙ Q
85 84 oveq1d K HL W H P A ¬ P ˙ W Q A S A ¬ S ˙ W ¬ S ˙ P ˙ Q P ˙ U ˙ S = P ˙ Q ˙ S
86 68 70 85 3eqtr4d K HL W H P A ¬ P ˙ W Q A S A ¬ S ˙ W ¬ S ˙ P ˙ Q Q ˙ P ˙ S = P ˙ U ˙ S
87 16 2 latj32 K Lat P Base K U Base K S Base K P ˙ U ˙ S = P ˙ S ˙ U
88 15 21 32 18 87 syl13anc K HL W H P A ¬ P ˙ W Q A S A ¬ S ˙ W ¬ S ˙ P ˙ Q P ˙ U ˙ S = P ˙ S ˙ U
89 86 88 eqtrd K HL W H P A ¬ P ˙ W Q A S A ¬ S ˙ W ¬ S ˙ P ˙ Q Q ˙ P ˙ S = P ˙ S ˙ U
90 62 66 89 3eqtr4d K HL W H P A ¬ P ˙ W Q A S A ¬ S ˙ W ¬ S ˙ P ˙ Q S ˙ U ˙ C = Q ˙ P ˙ S
91 90 oveq1d K HL W H P A ¬ P ˙ W Q A S A ¬ S ˙ W ¬ S ˙ P ˙ Q S ˙ U ˙ C ˙ Q ˙ C = Q ˙ P ˙ S ˙ Q ˙ C
92 16 1 3 latmle1 K Lat P ˙ S Base K W Base K P ˙ S ˙ W ˙ P ˙ S
93 15 43 46 92 syl3anc K HL W H P A ¬ P ˙ W Q A S A ¬ S ˙ W ¬ S ˙ P ˙ Q P ˙ S ˙ W ˙ P ˙ S
94 8 93 eqbrtrid K HL W H P A ¬ P ˙ W Q A S A ¬ S ˙ W ¬ S ˙ P ˙ Q C ˙ P ˙ S
95 16 1 2 latjlej2 K Lat C Base K P ˙ S Base K Q Base K C ˙ P ˙ S Q ˙ C ˙ Q ˙ P ˙ S
96 15 64 43 24 95 syl13anc K HL W H P A ¬ P ˙ W Q A S A ¬ S ˙ W ¬ S ˙ P ˙ Q C ˙ P ˙ S Q ˙ C ˙ Q ˙ P ˙ S
97 94 96 mpd K HL W H P A ¬ P ˙ W Q A S A ¬ S ˙ W ¬ S ˙ P ˙ Q Q ˙ C ˙ Q ˙ P ˙ S
98 16 2 latjcl K Lat Q Base K P ˙ S Base K Q ˙ P ˙ S Base K
99 15 24 43 98 syl3anc K HL W H P A ¬ P ˙ W Q A S A ¬ S ˙ W ¬ S ˙ P ˙ Q Q ˙ P ˙ S Base K
100 16 1 3 latleeqm2 K Lat Q ˙ C Base K Q ˙ P ˙ S Base K Q ˙ C ˙ Q ˙ P ˙ S Q ˙ P ˙ S ˙ Q ˙ C = Q ˙ C
101 15 36 99 100 syl3anc K HL W H P A ¬ P ˙ W Q A S A ¬ S ˙ W ¬ S ˙ P ˙ Q Q ˙ C ˙ Q ˙ P ˙ S Q ˙ P ˙ S ˙ Q ˙ C = Q ˙ C
102 97 101 mpbid K HL W H P A ¬ P ˙ W Q A S A ¬ S ˙ W ¬ S ˙ P ˙ Q Q ˙ P ˙ S ˙ Q ˙ C = Q ˙ C
103 40 91 102 3eqtrd K HL W H P A ¬ P ˙ W Q A S A ¬ S ˙ W ¬ S ˙ P ˙ Q S ˙ U ˙ Q ˙ C ˙ C = Q ˙ C
104 10 103 eqtrid K HL W H P A ¬ P ˙ W Q A S A ¬ S ˙ W ¬ S ˙ P ˙ Q F ˙ C = Q ˙ C