Metamath Proof Explorer


Theorem cdleme9

Description: Part of proof of Lemma E in Crawley p. 113, 2nd paragraph on p. 114. C and F represent s_1 and f(s) respectively. In their notation, we prove f(s) \/ s_1 = q \/ s_1. (Contributed by NM, 10-Jun-2012)

Ref Expression
Hypotheses cdleme9.l ˙=K
cdleme9.j ˙=joinK
cdleme9.m ˙=meetK
cdleme9.a A=AtomsK
cdleme9.h H=LHypK
cdleme9.u U=P˙Q˙W
cdleme9.f F=S˙U˙Q˙P˙S˙W
cdleme9.c C=P˙S˙W
Assertion cdleme9 KHLWHPA¬P˙WQASA¬S˙W¬S˙P˙QF˙C=Q˙C

Proof

Step Hyp Ref Expression
1 cdleme9.l ˙=K
2 cdleme9.j ˙=joinK
3 cdleme9.m ˙=meetK
4 cdleme9.a A=AtomsK
5 cdleme9.h H=LHypK
6 cdleme9.u U=P˙Q˙W
7 cdleme9.f F=S˙U˙Q˙P˙S˙W
8 cdleme9.c C=P˙S˙W
9 1 2 3 4 5 6 7 8 cdleme3d F=S˙U˙Q˙C
10 9 oveq1i F˙C=S˙U˙Q˙C˙C
11 simp1l KHLWHPA¬P˙WQASA¬S˙W¬S˙P˙QKHL
12 simp1 KHLWHPA¬P˙WQASA¬S˙W¬S˙P˙QKHLWH
13 simp21 KHLWHPA¬P˙WQASA¬S˙W¬S˙P˙QPA¬P˙W
14 simp23l KHLWHPA¬P˙WQASA¬S˙W¬S˙P˙QSA
15 11 hllatd KHLWHPA¬P˙WQASA¬S˙W¬S˙P˙QKLat
16 eqid BaseK=BaseK
17 16 4 atbase SASBaseK
18 14 17 syl KHLWHPA¬P˙WQASA¬S˙W¬S˙P˙QSBaseK
19 simp21l KHLWHPA¬P˙WQASA¬S˙W¬S˙P˙QPA
20 16 4 atbase PAPBaseK
21 19 20 syl KHLWHPA¬P˙WQASA¬S˙W¬S˙P˙QPBaseK
22 simp22 KHLWHPA¬P˙WQASA¬S˙W¬S˙P˙QQA
23 16 4 atbase QAQBaseK
24 22 23 syl KHLWHPA¬P˙WQASA¬S˙W¬S˙P˙QQBaseK
25 simp3 KHLWHPA¬P˙WQASA¬S˙W¬S˙P˙Q¬S˙P˙Q
26 16 1 2 latnlej1l KLatSBaseKPBaseKQBaseK¬S˙P˙QSP
27 26 necomd KLatSBaseKPBaseKQBaseK¬S˙P˙QPS
28 15 18 21 24 25 27 syl131anc KHLWHPA¬P˙WQASA¬S˙W¬S˙P˙QPS
29 1 2 3 4 5 8 cdleme9a KHLWHPA¬P˙WSAPSCA
30 12 13 14 28 29 syl112anc KHLWHPA¬P˙WQASA¬S˙W¬S˙P˙QCA
31 1 2 3 4 5 6 16 cdleme0aa KHLWHPAQAUBaseK
32 12 19 22 31 syl3anc KHLWHPA¬P˙WQASA¬S˙W¬S˙P˙QUBaseK
33 16 2 latjcl KLatSBaseKUBaseKS˙UBaseK
34 15 18 32 33 syl3anc KHLWHPA¬P˙WQASA¬S˙W¬S˙P˙QS˙UBaseK
35 16 2 4 hlatjcl KHLQACAQ˙CBaseK
36 11 22 30 35 syl3anc KHLWHPA¬P˙WQASA¬S˙W¬S˙P˙QQ˙CBaseK
37 1 2 4 hlatlej2 KHLQACAC˙Q˙C
38 11 22 30 37 syl3anc KHLWHPA¬P˙WQASA¬S˙W¬S˙P˙QC˙Q˙C
39 16 1 2 3 4 atmod4i1 KHLCAS˙UBaseKQ˙CBaseKC˙Q˙CS˙U˙Q˙C˙C=S˙U˙C˙Q˙C
40 11 30 34 36 38 39 syl131anc KHLWHPA¬P˙WQASA¬S˙W¬S˙P˙QS˙U˙Q˙C˙C=S˙U˙C˙Q˙C
41 8 oveq2i S˙C=S˙P˙S˙W
42 16 2 4 hlatjcl KHLPASAP˙SBaseK
43 11 19 14 42 syl3anc KHLWHPA¬P˙WQASA¬S˙W¬S˙P˙QP˙SBaseK
44 simp1r KHLWHPA¬P˙WQASA¬S˙W¬S˙P˙QWH
45 16 5 lhpbase WHWBaseK
46 44 45 syl KHLWHPA¬P˙WQASA¬S˙W¬S˙P˙QWBaseK
47 1 2 4 hlatlej2 KHLPASAS˙P˙S
48 11 19 14 47 syl3anc KHLWHPA¬P˙WQASA¬S˙W¬S˙P˙QS˙P˙S
49 16 1 2 3 4 atmod3i1 KHLSAP˙SBaseKWBaseKS˙P˙SS˙P˙S˙W=P˙S˙S˙W
50 11 14 43 46 48 49 syl131anc KHLWHPA¬P˙WQASA¬S˙W¬S˙P˙QS˙P˙S˙W=P˙S˙S˙W
51 simp23r KHLWHPA¬P˙WQASA¬S˙W¬S˙P˙Q¬S˙W
52 eqid 1.K=1.K
53 1 2 52 4 5 lhpjat2 KHLWHSA¬S˙WS˙W=1.K
54 12 14 51 53 syl12anc KHLWHPA¬P˙WQASA¬S˙W¬S˙P˙QS˙W=1.K
55 54 oveq2d KHLWHPA¬P˙WQASA¬S˙W¬S˙P˙QP˙S˙S˙W=P˙S˙1.K
56 hlol KHLKOL
57 11 56 syl KHLWHPA¬P˙WQASA¬S˙W¬S˙P˙QKOL
58 16 3 52 olm11 KOLP˙SBaseKP˙S˙1.K=P˙S
59 57 43 58 syl2anc KHLWHPA¬P˙WQASA¬S˙W¬S˙P˙QP˙S˙1.K=P˙S
60 50 55 59 3eqtrrd KHLWHPA¬P˙WQASA¬S˙W¬S˙P˙QP˙S=S˙P˙S˙W
61 41 60 eqtr4id KHLWHPA¬P˙WQASA¬S˙W¬S˙P˙QS˙C=P˙S
62 61 oveq1d KHLWHPA¬P˙WQASA¬S˙W¬S˙P˙QS˙C˙U=P˙S˙U
63 16 4 atbase CACBaseK
64 30 63 syl KHLWHPA¬P˙WQASA¬S˙W¬S˙P˙QCBaseK
65 16 2 latj32 KLatSBaseKUBaseKCBaseKS˙U˙C=S˙C˙U
66 15 18 32 64 65 syl13anc KHLWHPA¬P˙WQASA¬S˙W¬S˙P˙QS˙U˙C=S˙C˙U
67 2 4 hlatj32 KHLPASAQAP˙S˙Q=P˙Q˙S
68 11 19 14 22 67 syl13anc KHLWHPA¬P˙WQASA¬S˙W¬S˙P˙QP˙S˙Q=P˙Q˙S
69 16 2 latjcom KLatQBaseKP˙SBaseKQ˙P˙S=P˙S˙Q
70 15 24 43 69 syl3anc KHLWHPA¬P˙WQASA¬S˙W¬S˙P˙QQ˙P˙S=P˙S˙Q
71 6 oveq2i P˙U=P˙P˙Q˙W
72 16 2 4 hlatjcl KHLPAQAP˙QBaseK
73 11 19 22 72 syl3anc KHLWHPA¬P˙WQASA¬S˙W¬S˙P˙QP˙QBaseK
74 1 2 4 hlatlej1 KHLPAQAP˙P˙Q
75 11 19 22 74 syl3anc KHLWHPA¬P˙WQASA¬S˙W¬S˙P˙QP˙P˙Q
76 16 1 2 3 4 atmod3i1 KHLPAP˙QBaseKWBaseKP˙P˙QP˙P˙Q˙W=P˙Q˙P˙W
77 11 19 73 46 75 76 syl131anc KHLWHPA¬P˙WQASA¬S˙W¬S˙P˙QP˙P˙Q˙W=P˙Q˙P˙W
78 1 2 52 4 5 lhpjat2 KHLWHPA¬P˙WP˙W=1.K
79 12 13 78 syl2anc KHLWHPA¬P˙WQASA¬S˙W¬S˙P˙QP˙W=1.K
80 79 oveq2d KHLWHPA¬P˙WQASA¬S˙W¬S˙P˙QP˙Q˙P˙W=P˙Q˙1.K
81 16 3 52 olm11 KOLP˙QBaseKP˙Q˙1.K=P˙Q
82 57 73 81 syl2anc KHLWHPA¬P˙WQASA¬S˙W¬S˙P˙QP˙Q˙1.K=P˙Q
83 77 80 82 3eqtrd KHLWHPA¬P˙WQASA¬S˙W¬S˙P˙QP˙P˙Q˙W=P˙Q
84 71 83 eqtrid KHLWHPA¬P˙WQASA¬S˙W¬S˙P˙QP˙U=P˙Q
85 84 oveq1d KHLWHPA¬P˙WQASA¬S˙W¬S˙P˙QP˙U˙S=P˙Q˙S
86 68 70 85 3eqtr4d KHLWHPA¬P˙WQASA¬S˙W¬S˙P˙QQ˙P˙S=P˙U˙S
87 16 2 latj32 KLatPBaseKUBaseKSBaseKP˙U˙S=P˙S˙U
88 15 21 32 18 87 syl13anc KHLWHPA¬P˙WQASA¬S˙W¬S˙P˙QP˙U˙S=P˙S˙U
89 86 88 eqtrd KHLWHPA¬P˙WQASA¬S˙W¬S˙P˙QQ˙P˙S=P˙S˙U
90 62 66 89 3eqtr4d KHLWHPA¬P˙WQASA¬S˙W¬S˙P˙QS˙U˙C=Q˙P˙S
91 90 oveq1d KHLWHPA¬P˙WQASA¬S˙W¬S˙P˙QS˙U˙C˙Q˙C=Q˙P˙S˙Q˙C
92 16 1 3 latmle1 KLatP˙SBaseKWBaseKP˙S˙W˙P˙S
93 15 43 46 92 syl3anc KHLWHPA¬P˙WQASA¬S˙W¬S˙P˙QP˙S˙W˙P˙S
94 8 93 eqbrtrid KHLWHPA¬P˙WQASA¬S˙W¬S˙P˙QC˙P˙S
95 16 1 2 latjlej2 KLatCBaseKP˙SBaseKQBaseKC˙P˙SQ˙C˙Q˙P˙S
96 15 64 43 24 95 syl13anc KHLWHPA¬P˙WQASA¬S˙W¬S˙P˙QC˙P˙SQ˙C˙Q˙P˙S
97 94 96 mpd KHLWHPA¬P˙WQASA¬S˙W¬S˙P˙QQ˙C˙Q˙P˙S
98 16 2 latjcl KLatQBaseKP˙SBaseKQ˙P˙SBaseK
99 15 24 43 98 syl3anc KHLWHPA¬P˙WQASA¬S˙W¬S˙P˙QQ˙P˙SBaseK
100 16 1 3 latleeqm2 KLatQ˙CBaseKQ˙P˙SBaseKQ˙C˙Q˙P˙SQ˙P˙S˙Q˙C=Q˙C
101 15 36 99 100 syl3anc KHLWHPA¬P˙WQASA¬S˙W¬S˙P˙QQ˙C˙Q˙P˙SQ˙P˙S˙Q˙C=Q˙C
102 97 101 mpbid KHLWHPA¬P˙WQASA¬S˙W¬S˙P˙QQ˙P˙S˙Q˙C=Q˙C
103 40 91 102 3eqtrd KHLWHPA¬P˙WQASA¬S˙W¬S˙P˙QS˙U˙Q˙C˙C=Q˙C
104 10 103 eqtrid KHLWHPA¬P˙WQASA¬S˙W¬S˙P˙QF˙C=Q˙C