Metamath Proof Explorer


Theorem cdlemh1

Description: Part of proof of Lemma H of Crawley p. 118. (Contributed by NM, 17-Jun-2013)

Ref Expression
Hypotheses cdlemh.b B=BaseK
cdlemh.l ˙=K
cdlemh.j ˙=joinK
cdlemh.m ˙=meetK
cdlemh.a A=AtomsK
cdlemh.h H=LHypK
cdlemh.t T=LTrnKW
cdlemh.r R=trLKW
cdlemh.s S=P˙RG˙Q˙RGF-1
Assertion cdlemh1 KHLWHFTGTPAQAQ˙P˙RFRFRGS˙RGF-1=Q˙RGF-1

Proof

Step Hyp Ref Expression
1 cdlemh.b B=BaseK
2 cdlemh.l ˙=K
3 cdlemh.j ˙=joinK
4 cdlemh.m ˙=meetK
5 cdlemh.a A=AtomsK
6 cdlemh.h H=LHypK
7 cdlemh.t T=LTrnKW
8 cdlemh.r R=trLKW
9 cdlemh.s S=P˙RG˙Q˙RGF-1
10 9 oveq1i S˙RGF-1=P˙RG˙Q˙RGF-1˙RGF-1
11 simp11l KHLWHFTGTPAQAQ˙P˙RFRFRGKHL
12 simp11 KHLWHFTGTPAQAQ˙P˙RFRFRGKHLWH
13 simp13 KHLWHFTGTPAQAQ˙P˙RFRFRGGT
14 simp12 KHLWHFTGTPAQAQ˙P˙RFRFRGFT
15 simp3r KHLWHFTGTPAQAQ˙P˙RFRFRGRFRG
16 15 necomd KHLWHFTGTPAQAQ˙P˙RFRFRGRGRF
17 5 6 7 8 trlcocnvat KHLWHGTFTRGRFRGF-1A
18 12 13 14 16 17 syl121anc KHLWHFTGTPAQAQ˙P˙RFRFRGRGF-1A
19 11 hllatd KHLWHFTGTPAQAQ˙P˙RFRFRGKLat
20 simp2l KHLWHFTGTPAQAQ˙P˙RFRFRGPA
21 1 5 atbase PAPB
22 20 21 syl KHLWHFTGTPAQAQ˙P˙RFRFRGPB
23 1 6 7 8 trlcl KHLWHGTRGB
24 12 13 23 syl2anc KHLWHFTGTPAQAQ˙P˙RFRFRGRGB
25 1 3 latjcl KLatPBRGBP˙RGB
26 19 22 24 25 syl3anc KHLWHFTGTPAQAQ˙P˙RFRFRGP˙RGB
27 simp2r KHLWHFTGTPAQAQ˙P˙RFRFRGQA
28 1 3 5 hlatjcl KHLQARGF-1AQ˙RGF-1B
29 11 27 18 28 syl3anc KHLWHFTGTPAQAQ˙P˙RFRFRGQ˙RGF-1B
30 2 3 5 hlatlej2 KHLQARGF-1ARGF-1˙Q˙RGF-1
31 11 27 18 30 syl3anc KHLWHFTGTPAQAQ˙P˙RFRFRGRGF-1˙Q˙RGF-1
32 1 2 3 4 5 atmod4i1 KHLRGF-1AP˙RGBQ˙RGF-1BRGF-1˙Q˙RGF-1P˙RG˙Q˙RGF-1˙RGF-1=P˙RG˙RGF-1˙Q˙RGF-1
33 11 18 26 29 31 32 syl131anc KHLWHFTGTPAQAQ˙P˙RFRFRGP˙RG˙Q˙RGF-1˙RGF-1=P˙RG˙RGF-1˙Q˙RGF-1
34 6 7 ltrncnv KHLWHFTF-1T
35 12 14 34 syl2anc KHLWHFTGTPAQAQ˙P˙RFRFRGF-1T
36 3 6 7 8 trljco2 KHLWHGTF-1TRG˙RGF-1=RF-1˙RGF-1
37 12 13 35 36 syl3anc KHLWHFTGTPAQAQ˙P˙RFRFRGRG˙RGF-1=RF-1˙RGF-1
38 6 7 8 trlcnv KHLWHFTRF-1=RF
39 12 14 38 syl2anc KHLWHFTGTPAQAQ˙P˙RFRFRGRF-1=RF
40 39 oveq1d KHLWHFTGTPAQAQ˙P˙RFRFRGRF-1˙RGF-1=RF˙RGF-1
41 37 40 eqtrd KHLWHFTGTPAQAQ˙P˙RFRFRGRG˙RGF-1=RF˙RGF-1
42 41 oveq2d KHLWHFTGTPAQAQ˙P˙RFRFRGP˙RG˙RGF-1=P˙RF˙RGF-1
43 6 7 ltrnco KHLWHGTF-1TGF-1T
44 12 13 35 43 syl3anc KHLWHFTGTPAQAQ˙P˙RFRFRGGF-1T
45 1 6 7 8 trlcl KHLWHGF-1TRGF-1B
46 12 44 45 syl2anc KHLWHFTGTPAQAQ˙P˙RFRFRGRGF-1B
47 1 3 latjass KLatPBRGBRGF-1BP˙RG˙RGF-1=P˙RG˙RGF-1
48 19 22 24 46 47 syl13anc KHLWHFTGTPAQAQ˙P˙RFRFRGP˙RG˙RGF-1=P˙RG˙RGF-1
49 1 6 7 8 trlcl KHLWHFTRFB
50 12 14 49 syl2anc KHLWHFTGTPAQAQ˙P˙RFRFRGRFB
51 1 3 latjass KLatPBRFBRGF-1BP˙RF˙RGF-1=P˙RF˙RGF-1
52 19 22 50 46 51 syl13anc KHLWHFTGTPAQAQ˙P˙RFRFRGP˙RF˙RGF-1=P˙RF˙RGF-1
53 42 48 52 3eqtr4d KHLWHFTGTPAQAQ˙P˙RFRFRGP˙RG˙RGF-1=P˙RF˙RGF-1
54 53 oveq1d KHLWHFTGTPAQAQ˙P˙RFRFRGP˙RG˙RGF-1˙Q˙RGF-1=P˙RF˙RGF-1˙Q˙RGF-1
55 simp3l KHLWHFTGTPAQAQ˙P˙RFRFRGQ˙P˙RF
56 1 5 atbase QAQB
57 27 56 syl KHLWHFTGTPAQAQ˙P˙RFRFRGQB
58 1 3 latjcl KLatPBRFBP˙RFB
59 19 22 50 58 syl3anc KHLWHFTGTPAQAQ˙P˙RFRFRGP˙RFB
60 1 2 3 latjlej1 KLatQBP˙RFBRGF-1BQ˙P˙RFQ˙RGF-1˙P˙RF˙RGF-1
61 19 57 59 46 60 syl13anc KHLWHFTGTPAQAQ˙P˙RFRFRGQ˙P˙RFQ˙RGF-1˙P˙RF˙RGF-1
62 55 61 mpd KHLWHFTGTPAQAQ˙P˙RFRFRGQ˙RGF-1˙P˙RF˙RGF-1
63 1 3 latjcl KLatP˙RFBRGF-1BP˙RF˙RGF-1B
64 19 59 46 63 syl3anc KHLWHFTGTPAQAQ˙P˙RFRFRGP˙RF˙RGF-1B
65 1 2 4 latleeqm2 KLatQ˙RGF-1BP˙RF˙RGF-1BQ˙RGF-1˙P˙RF˙RGF-1P˙RF˙RGF-1˙Q˙RGF-1=Q˙RGF-1
66 19 29 64 65 syl3anc KHLWHFTGTPAQAQ˙P˙RFRFRGQ˙RGF-1˙P˙RF˙RGF-1P˙RF˙RGF-1˙Q˙RGF-1=Q˙RGF-1
67 62 66 mpbid KHLWHFTGTPAQAQ˙P˙RFRFRGP˙RF˙RGF-1˙Q˙RGF-1=Q˙RGF-1
68 33 54 67 3eqtrd KHLWHFTGTPAQAQ˙P˙RFRFRGP˙RG˙Q˙RGF-1˙RGF-1=Q˙RGF-1
69 10 68 eqtrid KHLWHFTGTPAQAQ˙P˙RFRFRGS˙RGF-1=Q˙RGF-1