Metamath Proof Explorer


Theorem cfilfcls

Description: Similar to ultrafilters ( uffclsflim ), the cluster points and limit points of a Cauchy filter coincide. (Contributed by Mario Carneiro, 15-Oct-2015)

Ref Expression
Hypotheses cfilfcls.1 J=MetOpenD
cfilfcls.2 X=domdomD
Assertion cfilfcls FCauFilDJfClusF=JfLimF

Proof

Step Hyp Ref Expression
1 cfilfcls.1 J=MetOpenD
2 cfilfcls.2 X=domdomD
3 eqid J=J
4 3 fclselbas xJfClusFxJ
5 4 adantl FCauFilDxJfClusFxJ
6 df-cfil CauFil=dran∞MetfFildomdomd|x+yfdy×y0x
7 6 mptrcl FCauFilDDran∞Met
8 xmetunirn Dran∞MetD∞MetdomdomD
9 7 8 sylib FCauFilDD∞MetdomdomD
10 2 fveq2i ∞MetX=∞MetdomdomD
11 9 10 eleqtrrdi FCauFilDD∞MetX
12 11 adantr FCauFilDxJfClusFD∞MetX
13 1 mopntopon D∞MetXJTopOnX
14 12 13 syl FCauFilDxJfClusFJTopOnX
15 toponuni JTopOnXX=J
16 14 15 syl FCauFilDxJfClusFX=J
17 5 16 eleqtrrd FCauFilDxJfClusFxX
18 1 mopni2 D∞MetXyJxyr+xballDry
19 18 3expb D∞MetXyJxyr+xballDry
20 12 19 sylan FCauFilDxJfClusFyJxyr+xballDry
21 cfilfil D∞MetXFCauFilDFFilX
22 11 21 mpancom FCauFilDFFilX
23 22 adantr FCauFilDxJfClusFFFilX
24 23 ad2antrr FCauFilDxJfClusFyJxyr+xballDryFFilX
25 12 adantr FCauFilDxJfClusFr+D∞MetX
26 simpll FCauFilDxJfClusFr+FCauFilD
27 rphalfcl r+r2+
28 27 adantl FCauFilDxJfClusFr+r2+
29 rphalfcl r2+r22+
30 28 29 syl FCauFilDxJfClusFr+r22+
31 cfil3i D∞MetXFCauFilDr22+yXyballDr22F
32 25 26 30 31 syl3anc FCauFilDxJfClusFr+yXyballDr22F
33 23 ad2antrr FCauFilDxJfClusFr+yXyballDr22FFFilX
34 simprr FCauFilDxJfClusFr+yXyballDr22FyballDr22F
35 25 adantr FCauFilDxJfClusFr+yXyballDr22FD∞MetX
36 17 ad2antrr FCauFilDxJfClusFr+yXyballDr22FxX
37 rpxr r+r*
38 37 ad2antlr FCauFilDxJfClusFr+yXyballDr22Fr*
39 blssm D∞MetXxXr*xballDrX
40 35 36 38 39 syl3anc FCauFilDxJfClusFr+yXyballDr22FxballDrX
41 simpllr FCauFilDxJfClusFr+yXyballDr22FxJfClusF
42 28 adantr FCauFilDxJfClusFr+yXyballDr22Fr2+
43 42 rpxrd FCauFilDxJfClusFr+yXyballDr22Fr2*
44 1 blopn D∞MetXxXr2*xballDr2J
45 35 36 43 44 syl3anc FCauFilDxJfClusFr+yXyballDr22FxballDr2J
46 blcntr D∞MetXxXr2+xxballDr2
47 35 36 42 46 syl3anc FCauFilDxJfClusFr+yXyballDr22FxxballDr2
48 fclsopni xJfClusFxballDr2JxxballDr2yballDr22FxballDr2yballDr22
49 41 45 47 34 48 syl13anc FCauFilDxJfClusFr+yXyballDr22FxballDr2yballDr22
50 n0 xballDr2yballDr22zzxballDr2yballDr22
51 49 50 sylib FCauFilDxJfClusFr+yXyballDr22FzzxballDr2yballDr22
52 elin zxballDr2yballDr22zxballDr2zyballDr22
53 35 adantr FCauFilDxJfClusFr+yXyballDr22FzxballDr2zyballDr22D∞MetX
54 simplrl FCauFilDxJfClusFr+yXyballDr22FzxballDr2zyballDr22yX
55 42 adantr FCauFilDxJfClusFr+yXyballDr22FzxballDr2zyballDr22r2+
56 55 rpred FCauFilDxJfClusFr+yXyballDr22FzxballDr2zyballDr22r2
57 simprr FCauFilDxJfClusFr+yXyballDr22FzxballDr2zyballDr22zyballDr22
58 blhalf D∞MetXyXr2zyballDr22yballDr22zballDr2
59 53 54 56 57 58 syl22anc FCauFilDxJfClusFr+yXyballDr22FzxballDr2zyballDr22yballDr22zballDr2
60 blssm D∞MetXxXr2*xballDr2X
61 35 36 43 60 syl3anc FCauFilDxJfClusFr+yXyballDr22FxballDr2X
62 61 sselda FCauFilDxJfClusFr+yXyballDr22FzxballDr2zX
63 62 adantrr FCauFilDxJfClusFr+yXyballDr22FzxballDr2zyballDr22zX
64 simpllr FCauFilDxJfClusFr+yXyballDr22FzxballDr2zyballDr22r+
65 64 rpred FCauFilDxJfClusFr+yXyballDr22FzxballDr2zyballDr22r
66 simprl FCauFilDxJfClusFr+yXyballDr22FzxballDr2zyballDr22zxballDr2
67 55 rpxrd FCauFilDxJfClusFr+yXyballDr22FzxballDr2zyballDr22r2*
68 36 adantr FCauFilDxJfClusFr+yXyballDr22FzxballDr2zyballDr22xX
69 blcom D∞MetXr2*xXzXzxballDr2xzballDr2
70 53 67 68 63 69 syl22anc FCauFilDxJfClusFr+yXyballDr22FzxballDr2zyballDr22zxballDr2xzballDr2
71 66 70 mpbid FCauFilDxJfClusFr+yXyballDr22FzxballDr2zyballDr22xzballDr2
72 blhalf D∞MetXzXrxzballDr2zballDr2xballDr
73 53 63 65 71 72 syl22anc FCauFilDxJfClusFr+yXyballDr22FzxballDr2zyballDr22zballDr2xballDr
74 59 73 sstrd FCauFilDxJfClusFr+yXyballDr22FzxballDr2zyballDr22yballDr22xballDr
75 74 ex FCauFilDxJfClusFr+yXyballDr22FzxballDr2zyballDr22yballDr22xballDr
76 52 75 biimtrid FCauFilDxJfClusFr+yXyballDr22FzxballDr2yballDr22yballDr22xballDr
77 76 exlimdv FCauFilDxJfClusFr+yXyballDr22FzzxballDr2yballDr22yballDr22xballDr
78 51 77 mpd FCauFilDxJfClusFr+yXyballDr22FyballDr22xballDr
79 filss FFilXyballDr22FxballDrXyballDr22xballDrxballDrF
80 33 34 40 78 79 syl13anc FCauFilDxJfClusFr+yXyballDr22FxballDrF
81 32 80 rexlimddv FCauFilDxJfClusFr+xballDrF
82 81 ad2ant2r FCauFilDxJfClusFyJxyr+xballDryxballDrF
83 toponss JTopOnXyJyX
84 83 adantrr JTopOnXyJxyyX
85 14 84 sylan FCauFilDxJfClusFyJxyyX
86 85 adantr FCauFilDxJfClusFyJxyr+xballDryyX
87 simprr FCauFilDxJfClusFyJxyr+xballDryxballDry
88 filss FFilXxballDrFyXxballDryyF
89 24 82 86 87 88 syl13anc FCauFilDxJfClusFyJxyr+xballDryyF
90 20 89 rexlimddv FCauFilDxJfClusFyJxyyF
91 90 expr FCauFilDxJfClusFyJxyyF
92 91 ralrimiva FCauFilDxJfClusFyJxyyF
93 flimopn JTopOnXFFilXxJfLimFxXyJxyyF
94 14 23 93 syl2anc FCauFilDxJfClusFxJfLimFxXyJxyyF
95 17 92 94 mpbir2and FCauFilDxJfClusFxJfLimF
96 95 ex FCauFilDxJfClusFxJfLimF
97 96 ssrdv FCauFilDJfClusFJfLimF
98 flimfcls JfLimFJfClusF
99 98 a1i FCauFilDJfLimFJfClusF
100 97 99 eqssd FCauFilDJfClusF=JfLimF