Metamath Proof Explorer


Theorem cfilres

Description: Cauchy filter on a metric subspace. (Contributed by Mario Carneiro, 15-Oct-2015)

Ref Expression
Assertion cfilres D∞MetXFFilXYFFCauFilDF𝑡YCauFilDY×Y

Proof

Step Hyp Ref Expression
1 simp2 D∞MetXFFilXYFFFilX
2 filfbas FFilXFfBasX
3 1 2 syl D∞MetXFFilXYFFfBasX
4 simp3 D∞MetXFFilXYFYF
5 fbncp FfBasXYF¬XYF
6 3 4 5 syl2anc D∞MetXFFilXYF¬XYF
7 filelss FFilXYFYX
8 7 3adant1 D∞MetXFFilXYFYX
9 trfil3 FFilXYXF𝑡YFilY¬XYF
10 1 8 9 syl2anc D∞MetXFFilXYFF𝑡YFilY¬XYF
11 6 10 mpbird D∞MetXFFilXYFF𝑡YFilY
12 11 adantr D∞MetXFFilXYFFCauFilDF𝑡YFilY
13 cfili FCauFilDx+sFusvsuDv<x
14 13 adantll D∞MetXFFilXYFFCauFilDx+sFusvsuDv<x
15 simpll2 D∞MetXFFilXYFFCauFilDx+FFilX
16 simpll3 D∞MetXFFilXYFFCauFilDx+YF
17 15 16 jca D∞MetXFFilXYFFCauFilDx+FFilXYF
18 elrestr FFilXYFsFsYF𝑡Y
19 18 3expa FFilXYFsFsYF𝑡Y
20 17 19 sylan D∞MetXFFilXYFFCauFilDx+sFsYF𝑡Y
21 inss1 sYs
22 ss2ralv sYsusvsuDv<xusYvsYuDv<x
23 21 22 ax-mp usvsuDv<xusYvsYuDv<x
24 elinel2 usYuY
25 elinel2 vsYvY
26 ovres uYvYuDY×Yv=uDv
27 26 breq1d uYvYuDY×Yv<xuDv<x
28 24 25 27 syl2an usYvsYuDY×Yv<xuDv<x
29 28 ralbidva usYvsYuDY×Yv<xvsYuDv<x
30 29 ralbiia usYvsYuDY×Yv<xusYvsYuDv<x
31 23 30 sylibr usvsuDv<xusYvsYuDY×Yv<x
32 raleq y=sYvyuDY×Yv<xvsYuDY×Yv<x
33 32 raleqbi1dv y=sYuyvyuDY×Yv<xusYvsYuDY×Yv<x
34 33 rspcev sYF𝑡YusYvsYuDY×Yv<xyF𝑡YuyvyuDY×Yv<x
35 34 ex sYF𝑡YusYvsYuDY×Yv<xyF𝑡YuyvyuDY×Yv<x
36 20 31 35 syl2im D∞MetXFFilXYFFCauFilDx+sFusvsuDv<xyF𝑡YuyvyuDY×Yv<x
37 36 rexlimdva D∞MetXFFilXYFFCauFilDx+sFusvsuDv<xyF𝑡YuyvyuDY×Yv<x
38 14 37 mpd D∞MetXFFilXYFFCauFilDx+yF𝑡YuyvyuDY×Yv<x
39 38 ralrimiva D∞MetXFFilXYFFCauFilDx+yF𝑡YuyvyuDY×Yv<x
40 simp1 D∞MetXFFilXYFD∞MetX
41 xmetres2 D∞MetXYXDY×Y∞MetY
42 40 8 41 syl2anc D∞MetXFFilXYFDY×Y∞MetY
43 42 adantr D∞MetXFFilXYFFCauFilDDY×Y∞MetY
44 iscfil2 DY×Y∞MetYF𝑡YCauFilDY×YF𝑡YFilYx+yF𝑡YuyvyuDY×Yv<x
45 43 44 syl D∞MetXFFilXYFFCauFilDF𝑡YCauFilDY×YF𝑡YFilYx+yF𝑡YuyvyuDY×Yv<x
46 12 39 45 mpbir2and D∞MetXFFilXYFFCauFilDF𝑡YCauFilDY×Y
47 46 ex D∞MetXFFilXYFFCauFilDF𝑡YCauFilDY×Y
48 cfilresi D∞MetXF𝑡YCauFilDY×YXfilGenF𝑡YCauFilD
49 48 ex D∞MetXF𝑡YCauFilDY×YXfilGenF𝑡YCauFilD
50 49 3ad2ant1 D∞MetXFFilXYFF𝑡YCauFilDY×YXfilGenF𝑡YCauFilD
51 fgtr FFilXYFXfilGenF𝑡Y=F
52 51 3adant1 D∞MetXFFilXYFXfilGenF𝑡Y=F
53 52 eleq1d D∞MetXFFilXYFXfilGenF𝑡YCauFilDFCauFilD
54 50 53 sylibd D∞MetXFFilXYFF𝑡YCauFilDY×YFCauFilD
55 47 54 impbid D∞MetXFFilXYFFCauFilDF𝑡YCauFilDY×Y