Metamath Proof Explorer


Theorem cfss

Description: There is a cofinal subset of A of cardinality ( cfA ) . (Contributed by Mario Carneiro, 24-Jun-2013)

Ref Expression
Hypothesis cfss.1 AV
Assertion cfss LimAxxAxcfAx=A

Proof

Step Hyp Ref Expression
1 cfss.1 AV
2 1 cflim3 LimAcfA=xx𝒫A|x=Acardx
3 fvex cardxV
4 3 dfiin2 xx𝒫A|x=Acardx=y|xx𝒫A|x=Ay=cardx
5 cardon cardxOn
6 eleq1 y=cardxyOncardxOn
7 5 6 mpbiri y=cardxyOn
8 7 rexlimivw xx𝒫A|x=Ay=cardxyOn
9 8 abssi y|xx𝒫A|x=Ay=cardxOn
10 limuni LimAA=A
11 10 eqcomd LimAA=A
12 fveq2 x=Acardx=cardA
13 12 eqcomd x=AcardA=cardx
14 13 biantrud x=AA=AA=AcardA=cardx
15 unieq x=Ax=A
16 15 eqeq1d x=Ax=AA=A
17 1 pwid A𝒫A
18 eleq1 x=Ax𝒫AA𝒫A
19 17 18 mpbiri x=Ax𝒫A
20 19 biantrurd x=Ax=Ax𝒫Ax=A
21 16 20 bitr3d x=AA=Ax𝒫Ax=A
22 21 anbi1d x=AA=AcardA=cardxx𝒫Ax=AcardA=cardx
23 14 22 bitr2d x=Ax𝒫Ax=AcardA=cardxA=A
24 1 23 spcev A=Axx𝒫Ax=AcardA=cardx
25 11 24 syl LimAxx𝒫Ax=AcardA=cardx
26 df-rex xx𝒫A|x=AcardA=cardxxxx𝒫A|x=AcardA=cardx
27 rabid xx𝒫A|x=Ax𝒫Ax=A
28 27 anbi1i xx𝒫A|x=AcardA=cardxx𝒫Ax=AcardA=cardx
29 28 exbii xxx𝒫A|x=AcardA=cardxxx𝒫Ax=AcardA=cardx
30 26 29 bitri xx𝒫A|x=AcardA=cardxxx𝒫Ax=AcardA=cardx
31 25 30 sylibr LimAxx𝒫A|x=AcardA=cardx
32 fvex cardAV
33 eqeq1 y=cardAy=cardxcardA=cardx
34 33 rexbidv y=cardAxx𝒫A|x=Ay=cardxxx𝒫A|x=AcardA=cardx
35 32 34 spcev xx𝒫A|x=AcardA=cardxyxx𝒫A|x=Ay=cardx
36 31 35 syl LimAyxx𝒫A|x=Ay=cardx
37 abn0 y|xx𝒫A|x=Ay=cardxyxx𝒫A|x=Ay=cardx
38 36 37 sylibr LimAy|xx𝒫A|x=Ay=cardx
39 onint y|xx𝒫A|x=Ay=cardxOny|xx𝒫A|x=Ay=cardxy|xx𝒫A|x=Ay=cardxy|xx𝒫A|x=Ay=cardx
40 9 38 39 sylancr LimAy|xx𝒫A|x=Ay=cardxy|xx𝒫A|x=Ay=cardx
41 4 40 eqeltrid LimAxx𝒫A|x=Acardxy|xx𝒫A|x=Ay=cardx
42 2 41 eqeltrd LimAcfAy|xx𝒫A|x=Ay=cardx
43 fvex cfAV
44 eqeq1 y=cfAy=cardxcfA=cardx
45 44 rexbidv y=cfAxx𝒫A|x=Ay=cardxxx𝒫A|x=AcfA=cardx
46 43 45 elab cfAy|xx𝒫A|x=Ay=cardxxx𝒫A|x=AcfA=cardx
47 42 46 sylib LimAxx𝒫A|x=AcfA=cardx
48 df-rex xx𝒫A|x=AcfA=cardxxxx𝒫A|x=AcfA=cardx
49 47 48 sylib LimAxxx𝒫A|x=AcfA=cardx
50 simprl LimAxx𝒫A|x=AcfA=cardxxx𝒫A|x=A
51 50 27 sylib LimAxx𝒫A|x=AcfA=cardxx𝒫Ax=A
52 51 simpld LimAxx𝒫A|x=AcfA=cardxx𝒫A
53 52 elpwid LimAxx𝒫A|x=AcfA=cardxxA
54 simpl LimAxx𝒫A|x=AcfA=cardxLimA
55 vex xV
56 limord LimAOrdA
57 ordsson OrdAAOn
58 56 57 syl LimAAOn
59 sstr xAAOnxOn
60 58 59 sylan2 xALimAxOn
61 onssnum xVxOnxdomcard
62 55 60 61 sylancr xALimAxdomcard
63 cardid2 xdomcardcardxx
64 62 63 syl xALimAcardxx
65 64 ensymd xALimAxcardx
66 53 54 65 syl2anc LimAxx𝒫A|x=AcfA=cardxxcardx
67 simprr LimAxx𝒫A|x=AcfA=cardxcfA=cardx
68 66 67 breqtrrd LimAxx𝒫A|x=AcfA=cardxxcfA
69 51 simprd LimAxx𝒫A|x=AcfA=cardxx=A
70 53 68 69 3jca LimAxx𝒫A|x=AcfA=cardxxAxcfAx=A
71 70 ex LimAxx𝒫A|x=AcfA=cardxxAxcfAx=A
72 71 eximdv LimAxxx𝒫A|x=AcfA=cardxxxAxcfAx=A
73 49 72 mpd LimAxxAxcfAx=A