Description: There is a cofinal subset of A of cardinality ( cfA ) . (Contributed by Mario Carneiro, 24-Jun-2013)
Ref | Expression | ||
---|---|---|---|
Hypothesis | cfss.1 | |
|
Assertion | cfss | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cfss.1 | |
|
2 | 1 | cflim3 | |
3 | fvex | |
|
4 | 3 | dfiin2 | |
5 | cardon | |
|
6 | eleq1 | |
|
7 | 5 6 | mpbiri | |
8 | 7 | rexlimivw | |
9 | 8 | abssi | |
10 | limuni | |
|
11 | 10 | eqcomd | |
12 | fveq2 | |
|
13 | 12 | eqcomd | |
14 | 13 | biantrud | |
15 | unieq | |
|
16 | 15 | eqeq1d | |
17 | 1 | pwid | |
18 | eleq1 | |
|
19 | 17 18 | mpbiri | |
20 | 19 | biantrurd | |
21 | 16 20 | bitr3d | |
22 | 21 | anbi1d | |
23 | 14 22 | bitr2d | |
24 | 1 23 | spcev | |
25 | 11 24 | syl | |
26 | df-rex | |
|
27 | rabid | |
|
28 | 27 | anbi1i | |
29 | 28 | exbii | |
30 | 26 29 | bitri | |
31 | 25 30 | sylibr | |
32 | fvex | |
|
33 | eqeq1 | |
|
34 | 33 | rexbidv | |
35 | 32 34 | spcev | |
36 | 31 35 | syl | |
37 | abn0 | |
|
38 | 36 37 | sylibr | |
39 | onint | |
|
40 | 9 38 39 | sylancr | |
41 | 4 40 | eqeltrid | |
42 | 2 41 | eqeltrd | |
43 | fvex | |
|
44 | eqeq1 | |
|
45 | 44 | rexbidv | |
46 | 43 45 | elab | |
47 | 42 46 | sylib | |
48 | df-rex | |
|
49 | 47 48 | sylib | |
50 | simprl | |
|
51 | 50 27 | sylib | |
52 | 51 | simpld | |
53 | 52 | elpwid | |
54 | simpl | |
|
55 | vex | |
|
56 | limord | |
|
57 | ordsson | |
|
58 | 56 57 | syl | |
59 | sstr | |
|
60 | 58 59 | sylan2 | |
61 | onssnum | |
|
62 | 55 60 61 | sylancr | |
63 | cardid2 | |
|
64 | 62 63 | syl | |
65 | 64 | ensymd | |
66 | 53 54 65 | syl2anc | |
67 | simprr | |
|
68 | 66 67 | breqtrrd | |
69 | 51 | simprd | |
70 | 53 68 69 | 3jca | |
71 | 70 | ex | |
72 | 71 | eximdv | |
73 | 49 72 | mpd | |