Metamath Proof Explorer


Theorem chebbnd2

Description: The Chebyshev bound, part 2: The function ppi ( x ) is eventually upper bounded by a positive constant times x / log ( x ) . Alternatively stated, the function ppi ( x ) / ( x / log ( x ) ) is eventually bounded. (Contributed by Mario Carneiro, 22-Sep-2014)

Ref Expression
Assertion chebbnd2 x2+∞π_xxlogx𝑂1

Proof

Step Hyp Ref Expression
1 ovexd 2+∞V
2 ovexd x2+∞θxxV
3 ovexd x2+∞π_xlogxθxV
4 eqidd x2+∞θxx=x2+∞θxx
5 simpr x2+∞x2+∞
6 2re 2
7 elicopnf 2x2+∞x2x
8 6 7 ax-mp x2+∞x2x
9 5 8 sylib x2+∞x2x
10 chtrpcl x2xθx+
11 9 10 syl x2+∞θx+
12 11 rpcnne0d x2+∞θxθx0
13 ppinncl x2xπ_x
14 9 13 syl x2+∞π_x
15 14 nnrpd x2+∞π_x+
16 9 simpld x2+∞x
17 1red x2+∞1
18 6 a1i x2+∞2
19 1lt2 1<2
20 19 a1i x2+∞1<2
21 9 simprd x2+∞2x
22 17 18 16 20 21 ltletrd x2+∞1<x
23 16 22 rplogcld x2+∞logx+
24 15 23 rpmulcld x2+∞π_xlogx+
25 24 rpcnne0d x2+∞π_xlogxπ_xlogx0
26 recdiv θxθx0π_xlogxπ_xlogx01θxπ_xlogx=π_xlogxθx
27 12 25 26 syl2anc x2+∞1θxπ_xlogx=π_xlogxθx
28 27 mpteq2dva x2+∞1θxπ_xlogx=x2+∞π_xlogxθx
29 1 2 3 4 28 offval2 x2+∞θxx×fx2+∞1θxπ_xlogx=x2+∞θxxπ_xlogxθx
30 0red x2+∞0
31 2pos 0<2
32 31 a1i x2+∞0<2
33 30 18 16 32 21 ltletrd x2+∞0<x
34 16 33 elrpd x2+∞x+
35 34 rpcnne0d x2+∞xx0
36 24 rpcnd x2+∞π_xlogx
37 dmdcan θxθx0xx0π_xlogxθxxπ_xlogxθx=π_xlogxx
38 12 35 36 37 syl3anc x2+∞θxxπ_xlogxθx=π_xlogxx
39 15 rpcnd x2+∞π_x
40 23 rpcnne0d x2+∞logxlogx0
41 divdiv2 π_xxx0logxlogx0π_xxlogx=π_xlogxx
42 39 35 40 41 syl3anc x2+∞π_xxlogx=π_xlogxx
43 38 42 eqtr4d x2+∞θxxπ_xlogxθx=π_xxlogx
44 43 mpteq2dva x2+∞θxxπ_xlogxθx=x2+∞π_xxlogx
45 29 44 eqtrd x2+∞θxx×fx2+∞1θxπ_xlogx=x2+∞π_xxlogx
46 34 ex x2+∞x+
47 46 ssrdv 2+∞+
48 chto1ub x+θxx𝑂1
49 48 a1i x+θxx𝑂1
50 47 49 o1res2 x2+∞θxx𝑂1
51 ax-1cn 1
52 51 a1i x2+∞1
53 11 24 rpdivcld x2+∞θxπ_xlogx+
54 53 rpcnd x2+∞θxπ_xlogx
55 pnfxr +∞*
56 icossre 2+∞*2+∞
57 6 55 56 mp2an 2+∞
58 rlimconst 2+∞1x2+∞11
59 57 51 58 mp2an x2+∞11
60 59 a1i x2+∞11
61 chtppilim x2+∞θxπ_xlogx1
62 61 a1i x2+∞θxπ_xlogx1
63 ax-1ne0 10
64 63 a1i 10
65 53 rpne0d x2+∞θxπ_xlogx0
66 52 54 60 62 64 65 rlimdiv x2+∞1θxπ_xlogx11
67 rlimo1 x2+∞1θxπ_xlogx11x2+∞1θxπ_xlogx𝑂1
68 66 67 syl x2+∞1θxπ_xlogx𝑂1
69 o1mul x2+∞θxx𝑂1x2+∞1θxπ_xlogx𝑂1x2+∞θxx×fx2+∞1θxπ_xlogx𝑂1
70 50 68 69 syl2anc x2+∞θxx×fx2+∞1θxπ_xlogx𝑂1
71 45 70 eqeltrrd x2+∞π_xxlogx𝑂1
72 71 mptru x2+∞π_xxlogx𝑂1