Description: The Chebyshev bound, part 2: The function ppi ( x ) is eventually upper bounded by a positive constant times x / log ( x ) . Alternatively stated, the function ppi ( x ) / ( x / log ( x ) ) is eventually bounded. (Contributed by Mario Carneiro, 22-Sep-2014)
Ref | Expression | ||
---|---|---|---|
Assertion | chebbnd2 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ovexd | |
|
2 | ovexd | |
|
3 | ovexd | |
|
4 | eqidd | |
|
5 | simpr | |
|
6 | 2re | |
|
7 | elicopnf | |
|
8 | 6 7 | ax-mp | |
9 | 5 8 | sylib | |
10 | chtrpcl | |
|
11 | 9 10 | syl | |
12 | 11 | rpcnne0d | |
13 | ppinncl | |
|
14 | 9 13 | syl | |
15 | 14 | nnrpd | |
16 | 9 | simpld | |
17 | 1red | |
|
18 | 6 | a1i | |
19 | 1lt2 | |
|
20 | 19 | a1i | |
21 | 9 | simprd | |
22 | 17 18 16 20 21 | ltletrd | |
23 | 16 22 | rplogcld | |
24 | 15 23 | rpmulcld | |
25 | 24 | rpcnne0d | |
26 | recdiv | |
|
27 | 12 25 26 | syl2anc | |
28 | 27 | mpteq2dva | |
29 | 1 2 3 4 28 | offval2 | |
30 | 0red | |
|
31 | 2pos | |
|
32 | 31 | a1i | |
33 | 30 18 16 32 21 | ltletrd | |
34 | 16 33 | elrpd | |
35 | 34 | rpcnne0d | |
36 | 24 | rpcnd | |
37 | dmdcan | |
|
38 | 12 35 36 37 | syl3anc | |
39 | 15 | rpcnd | |
40 | 23 | rpcnne0d | |
41 | divdiv2 | |
|
42 | 39 35 40 41 | syl3anc | |
43 | 38 42 | eqtr4d | |
44 | 43 | mpteq2dva | |
45 | 29 44 | eqtrd | |
46 | 34 | ex | |
47 | 46 | ssrdv | |
48 | chto1ub | |
|
49 | 48 | a1i | |
50 | 47 49 | o1res2 | |
51 | ax-1cn | |
|
52 | 51 | a1i | |
53 | 11 24 | rpdivcld | |
54 | 53 | rpcnd | |
55 | pnfxr | |
|
56 | icossre | |
|
57 | 6 55 56 | mp2an | |
58 | rlimconst | |
|
59 | 57 51 58 | mp2an | |
60 | 59 | a1i | |
61 | chtppilim | |
|
62 | 61 | a1i | |
63 | ax-1ne0 | |
|
64 | 63 | a1i | |
65 | 53 | rpne0d | |
66 | 52 54 60 62 64 65 | rlimdiv | |
67 | rlimo1 | |
|
68 | 66 67 | syl | |
69 | o1mul | |
|
70 | 50 68 69 | syl2anc | |
71 | 45 70 | eqeltrrd | |
72 | 71 | mptru | |