Metamath Proof Explorer


Theorem chfacfpmmulfsupp

Description: A mapping of values of the "characteristic factor function" multiplied with a constant polynomial matrix is finitely supported. (Contributed by AV, 23-Nov-2019)

Ref Expression
Hypotheses cayhamlem1.a A=NMatR
cayhamlem1.b B=BaseA
cayhamlem1.p P=Poly1R
cayhamlem1.y Y=NMatP
cayhamlem1.r ×˙=Y
cayhamlem1.s -˙=-Y
cayhamlem1.0 0˙=0Y
cayhamlem1.t T=NmatToPolyMatR
cayhamlem1.g G=n0ifn=00˙-˙TM×˙Tb0ifn=s+1Tbsifs+1<n0˙Tbn1-˙TM×˙Tbn
cayhamlem1.e ×˙=mulGrpY
Assertion chfacfpmmulfsupp NFinRCRingMBsbB0sfinSupp0˙i0i×˙TM×˙Gi

Proof

Step Hyp Ref Expression
1 cayhamlem1.a A=NMatR
2 cayhamlem1.b B=BaseA
3 cayhamlem1.p P=Poly1R
4 cayhamlem1.y Y=NMatP
5 cayhamlem1.r ×˙=Y
6 cayhamlem1.s -˙=-Y
7 cayhamlem1.0 0˙=0Y
8 cayhamlem1.t T=NmatToPolyMatR
9 cayhamlem1.g G=n0ifn=00˙-˙TM×˙Tb0ifn=s+1Tbsifs+1<n0˙Tbn1-˙TM×˙Tbn
10 cayhamlem1.e ×˙=mulGrpY
11 7 fvexi 0˙V
12 11 a1i NFinRCRingMBsbB0s0˙V
13 ovexd NFinRCRingMBsbB0si0i×˙TM×˙GiV
14 nnnn0 ss0
15 14 ad2antrl NFinRCRingMBsbB0ss0
16 1nn0 10
17 16 a1i NFinRCRingMBsbB0s10
18 15 17 nn0addcld NFinRCRingMBsbB0ss+10
19 vex kV
20 csbov12g kVk/ii×˙TM×˙Gi=k/ii×˙TM×˙k/iGi
21 nfcvd kV_ik×˙TM
22 oveq1 i=ki×˙TM=k×˙TM
23 21 22 csbiegf kVk/ii×˙TM=k×˙TM
24 csbfv k/iGi=Gk
25 24 a1i kVk/iGi=Gk
26 23 25 oveq12d kVk/ii×˙TM×˙k/iGi=k×˙TM×˙Gk
27 20 26 eqtrd kVk/ii×˙TM×˙Gi=k×˙TM×˙Gk
28 19 27 mp1i NFinRCRingMBsbB0sk0s+1<kk/ii×˙TM×˙Gi=k×˙TM×˙Gk
29 simplll NFinRCRingMBsbB0sk0s+1<kNFinRCRingMB
30 simpllr NFinRCRingMBsbB0sk0s+1<ksbB0s
31 14 adantr sbB0ss0
32 31 ad2antlr NFinRCRingMBsbB0sk0s0
33 32 nn0zd NFinRCRingMBsbB0sk0s
34 33 adantr NFinRCRingMBsbB0sk0s+1<ks
35 2z 2
36 35 a1i NFinRCRingMBsbB0sk0s+1<k2
37 34 36 zaddcld NFinRCRingMBsbB0sk0s+1<ks+2
38 simplr NFinRCRingMBsbB0sk0s+1<kk0
39 38 nn0zd NFinRCRingMBsbB0sk0s+1<kk
40 peano2nn0 s0s+10
41 14 40 syl ss+10
42 41 ad2antrl NFinRCRingMBsbB0ss+10
43 42 nn0zd NFinRCRingMBsbB0ss+1
44 nn0z k0k
45 zltp1le s+1ks+1<ks+1+1k
46 43 44 45 syl2an NFinRCRingMBsbB0sk0s+1<ks+1+1k
47 46 biimpa NFinRCRingMBsbB0sk0s+1<ks+1+1k
48 nncn ss
49 add1p1 ss+1+1=s+2
50 48 49 syl ss+1+1=s+2
51 50 breq1d ss+1+1ks+2k
52 51 bicomd ss+2ks+1+1k
53 52 adantr sbB0ss+2ks+1+1k
54 53 ad2antlr NFinRCRingMBsbB0sk0s+2ks+1+1k
55 54 adantr NFinRCRingMBsbB0sk0s+1<ks+2ks+1+1k
56 47 55 mpbird NFinRCRingMBsbB0sk0s+1<ks+2k
57 eluz2 ks+2s+2ks+2k
58 37 39 56 57 syl3anbrc NFinRCRingMBsbB0sk0s+1<kks+2
59 1 2 3 4 5 6 7 8 9 10 chfacfpmmul0 NFinRCRingMBsbB0sks+2k×˙TM×˙Gk=0˙
60 29 30 58 59 syl3anc NFinRCRingMBsbB0sk0s+1<kk×˙TM×˙Gk=0˙
61 28 60 eqtrd NFinRCRingMBsbB0sk0s+1<kk/ii×˙TM×˙Gi=0˙
62 61 ex NFinRCRingMBsbB0sk0s+1<kk/ii×˙TM×˙Gi=0˙
63 62 ralrimiva NFinRCRingMBsbB0sk0s+1<kk/ii×˙TM×˙Gi=0˙
64 breq1 x=s+1x<ks+1<k
65 64 rspceaimv s+10k0s+1<kk/ii×˙TM×˙Gi=0˙x0k0x<kk/ii×˙TM×˙Gi=0˙
66 18 63 65 syl2anc NFinRCRingMBsbB0sx0k0x<kk/ii×˙TM×˙Gi=0˙
67 12 13 66 mptnn0fsupp NFinRCRingMBsbB0sfinSupp0˙i0i×˙TM×˙Gi