Metamath Proof Explorer


Theorem chfacfscmulcl

Description: Closure of a scaled value of the "characteristic factor function". (Contributed by AV, 9-Nov-2019)

Ref Expression
Hypotheses chfacfisf.a A=NMatR
chfacfisf.b B=BaseA
chfacfisf.p P=Poly1R
chfacfisf.y Y=NMatP
chfacfisf.r ×˙=Y
chfacfisf.s -˙=-Y
chfacfisf.0 0˙=0Y
chfacfisf.t T=NmatToPolyMatR
chfacfisf.g G=n0ifn=00˙-˙TM×˙Tb0ifn=s+1Tbsifs+1<n0˙Tbn1-˙TM×˙Tbn
chfacfscmulcl.x X=var1R
chfacfscmulcl.m ·˙=Y
chfacfscmulcl.e ×˙=mulGrpP
Assertion chfacfscmulcl NFinRCRingMBsbB0sK0K×˙X·˙GKBaseY

Proof

Step Hyp Ref Expression
1 chfacfisf.a A=NMatR
2 chfacfisf.b B=BaseA
3 chfacfisf.p P=Poly1R
4 chfacfisf.y Y=NMatP
5 chfacfisf.r ×˙=Y
6 chfacfisf.s -˙=-Y
7 chfacfisf.0 0˙=0Y
8 chfacfisf.t T=NmatToPolyMatR
9 chfacfisf.g G=n0ifn=00˙-˙TM×˙Tb0ifn=s+1Tbsifs+1<n0˙Tbn1-˙TM×˙Tbn
10 chfacfscmulcl.x X=var1R
11 chfacfscmulcl.m ·˙=Y
12 chfacfscmulcl.e ×˙=mulGrpP
13 crngring RCRingRRing
14 3 4 pmatlmod NFinRRingYLMod
15 13 14 sylan2 NFinRCRingYLMod
16 15 3adant3 NFinRCRingMBYLMod
17 16 3ad2ant1 NFinRCRingMBsbB0sK0YLMod
18 eqid mulGrpP=mulGrpP
19 eqid BaseP=BaseP
20 18 19 mgpbas BaseP=BasemulGrpP
21 3 ply1ring RRingPRing
22 13 21 syl RCRingPRing
23 22 3ad2ant2 NFinRCRingMBPRing
24 18 ringmgp PRingmulGrpPMnd
25 23 24 syl NFinRCRingMBmulGrpPMnd
26 25 3ad2ant1 NFinRCRingMBsbB0sK0mulGrpPMnd
27 simp3 NFinRCRingMBsbB0sK0K0
28 13 3ad2ant2 NFinRCRingMBRRing
29 10 3 19 vr1cl RRingXBaseP
30 28 29 syl NFinRCRingMBXBaseP
31 30 3ad2ant1 NFinRCRingMBsbB0sK0XBaseP
32 20 12 26 27 31 mulgnn0cld NFinRCRingMBsbB0sK0K×˙XBaseP
33 3 ply1crng RCRingPCRing
34 33 anim2i NFinRCRingNFinPCRing
35 34 3adant3 NFinRCRingMBNFinPCRing
36 4 matsca2 NFinPCRingP=ScalarY
37 35 36 syl NFinRCRingMBP=ScalarY
38 37 eqcomd NFinRCRingMBScalarY=P
39 38 fveq2d NFinRCRingMBBaseScalarY=BaseP
40 39 3ad2ant1 NFinRCRingMBsbB0sK0BaseScalarY=BaseP
41 32 40 eleqtrrd NFinRCRingMBsbB0sK0K×˙XBaseScalarY
42 1 2 3 4 5 6 7 8 9 chfacfisf NFinRRingMBsbB0sG:0BaseY
43 13 42 syl3anl2 NFinRCRingMBsbB0sG:0BaseY
44 43 3adant3 NFinRCRingMBsbB0sK0G:0BaseY
45 44 27 ffvelcdmd NFinRCRingMBsbB0sK0GKBaseY
46 eqid BaseY=BaseY
47 eqid ScalarY=ScalarY
48 eqid BaseScalarY=BaseScalarY
49 46 47 11 48 lmodvscl YLModK×˙XBaseScalarYGKBaseYK×˙X·˙GKBaseY
50 17 41 45 49 syl3anc NFinRCRingMBsbB0sK0K×˙X·˙GKBaseY