Metamath Proof Explorer


Theorem climxlim2lem

Description: In this lemma for climxlim2 there is the additional assumption that the converging function is complex-valued on the whole domain. (Contributed by Glauco Siliprandi, 5-Feb-2022)

Ref Expression
Hypotheses climxlim2lem.1 φ M
climxlim2lem.2 Z = M
climxlim2lem.3 φ F : Z *
climxlim2lem.4 φ F : Z
climxlim2lem.5 φ F A
Assertion climxlim2lem φ F * A

Proof

Step Hyp Ref Expression
1 climxlim2lem.1 φ M
2 climxlim2lem.2 Z = M
3 climxlim2lem.3 φ F : Z *
4 climxlim2lem.4 φ F : Z
5 climxlim2lem.5 φ F A
6 5 adantr φ A F A
7 1 adantr φ A M
8 3 adantr φ A F : Z *
9 simpr φ A A
10 7 2 8 9 xlimclim2 φ A F * A F A
11 6 10 mpbird φ A F * A
12 4 ffvelrnda φ k Z F k
13 12 anim1i φ k Z F k A F k F k A
14 13 adantllr φ y * y y A x y A k Z F k A F k F k A
15 3 adantr φ y * y y A x y A F : Z *
16 15 ffvelrnda φ y * y y A x y A k Z F k *
17 simplr φ y * y y A x y A k Z y * y y A x y A
18 eleq1 y = F k y F k
19 neeq1 y = F k y A F k A
20 18 19 anbi12d y = F k y y A F k F k A
21 fvoveq1 y = F k y A = F k A
22 21 breq2d y = F k x y A x F k A
23 20 22 imbi12d y = F k y y A x y A F k F k A x F k A
24 23 rspcva F k * y * y y A x y A F k F k A x F k A
25 16 17 24 syl2anc φ y * y y A x y A k Z F k F k A x F k A
26 25 adantr φ y * y y A x y A k Z F k A F k F k A x F k A
27 14 26 mpd φ y * y y A x y A k Z F k A x F k A
28 27 ex φ y * y y A x y A k Z F k A x F k A
29 28 ralrimiva φ y * y y A x y A k Z F k A x F k A
30 29 ad4ant14 φ ¬ A x + y * y y A x y A k Z F k A x F k A
31 climcl F A A
32 5 31 syl φ A
33 32 adantr φ ¬ A A
34 simpr φ ¬ A ¬ A
35 prfi +∞ −∞ Fin
36 35 a1i φ ¬ A +∞ −∞ Fin
37 df-xr * = +∞ −∞
38 33 34 36 37 cnrefiisp φ ¬ A x + y * y y A x y A
39 30 38 reximddv3 φ ¬ A x + k Z F k A x F k A
40 nfv k φ x +
41 nfra1 k k Z F k A x F k A
42 40 41 nfan k φ x + k Z F k A x F k A
43 nfv k j Z
44 42 43 nfan k φ x + k Z F k A x F k A j Z
45 nfra1 k k j F k A < x
46 44 45 nfan k φ x + k Z F k A x F k A j Z k j F k A < x
47 simpll k Z F k A x F k A j Z k j k Z F k A x F k A
48 2 uztrn2 j Z k j k Z
49 48 adantll k Z F k A x F k A j Z k j k Z
50 rspa k Z F k A x F k A k Z F k A x F k A
51 47 49 50 syl2anc k Z F k A x F k A j Z k j F k A x F k A
52 neqne ¬ F k = A F k A
53 51 52 impel k Z F k A x F k A j Z k j ¬ F k = A x F k A
54 53 ad5ant2345 φ x + k Z F k A x F k A j Z k j ¬ F k = A x F k A
55 54 adantllr φ x + k Z F k A x F k A j Z k j F k A < x k j ¬ F k = A x F k A
56 rspa k j F k A < x k j F k A < x
57 56 adantll φ x + j Z k j F k A < x k j F k A < x
58 4 ad2antrr φ j Z k j F : Z
59 48 adantll φ j Z k j k Z
60 58 59 ffvelrnd φ j Z k j F k
61 60 adantlr φ j Z k j F k A < x k j F k
62 32 ad3antrrr φ j Z k j F k A < x k j A
63 61 62 subcld φ j Z k j F k A < x k j F k A
64 63 abscld φ j Z k j F k A < x k j F k A
65 64 adantl3r φ x + j Z k j F k A < x k j F k A
66 simpr φ x + x +
67 66 ad3antrrr φ x + j Z k j F k A < x k j x +
68 67 rpred φ x + j Z k j F k A < x k j x
69 65 68 ltnled φ x + j Z k j F k A < x k j F k A < x ¬ x F k A
70 57 69 mpbid φ x + j Z k j F k A < x k j ¬ x F k A
71 70 adantl3r φ x + k Z F k A x F k A j Z k j F k A < x k j ¬ x F k A
72 71 adantr φ x + k Z F k A x F k A j Z k j F k A < x k j ¬ F k = A ¬ x F k A
73 55 72 condan φ x + k Z F k A x F k A j Z k j F k A < x k j F k = A
74 46 73 ralrimia φ x + k Z F k A x F k A j Z k j F k A < x k j F k = A
75 nfcv _ k F
76 75 1 2 4 climuz φ F A A x + j Z k j F k A < x
77 5 76 mpbid φ A x + j Z k j F k A < x
78 77 simprd φ x + j Z k j F k A < x
79 78 r19.21bi φ x + j Z k j F k A < x
80 79 adantr φ x + k Z F k A x F k A j Z k j F k A < x
81 74 80 reximddv3 φ x + k Z F k A x F k A j Z k j F k = A
82 81 adantllr φ ¬ A x + k Z F k A x F k A j Z k j F k = A
83 39 82 rexlimddv2 φ ¬ A j Z k j F k = A
84 nfv k φ ¬ A j Z
85 nfra1 k k j F k = A
86 84 85 nfan k φ ¬ A j Z k j F k = A
87 3 ad3antrrr φ ¬ A j Z k j F k = A F : Z *
88 simplr φ ¬ A j Z k j F k = A j Z
89 2 uzid3 j Z j j
90 fveq2 k = j F k = F j
91 90 eqeq1d k = j F k = A F j = A
92 91 rspcva j j k j F k = A F j = A
93 89 92 sylan j Z k j F k = A F j = A
94 93 3adant1 φ j Z k j F k = A F j = A
95 3 ffvelrnda φ j Z F j *
96 95 3adant3 φ j Z k j F k = A F j *
97 94 96 eqeltrrd φ j Z k j F k = A A *
98 97 ad4ant134 φ ¬ A j Z k j F k = A A *
99 rspa k j F k = A k j F k = A
100 99 adantll φ ¬ A j Z k j F k = A k j F k = A
101 86 75 2 87 88 98 100 xlimconst2 φ ¬ A j Z k j F k = A F * A
102 83 101 rexlimddv2 φ ¬ A F * A
103 11 102 pm2.61dan φ F * A