Metamath Proof Explorer


Theorem clwwlknonex2lem2

Description: Lemma 2 for clwwlknonex2 : Transformation of a walk and two edges into a walk extended by two vertices/edges. (Contributed by AV, 22-Sep-2018) (Revised by AV, 27-Jan-2022)

Ref Expression
Hypotheses clwwlknonex2.v V=VtxG
clwwlknonex2.e E=EdgG
Assertion clwwlknonex2lem2 XVYVN3WWordVi0..^W1WiWi+1ElastSWW0EW=N2W0=XXYEi0..^W1W1WW++⟨“X”⟩++⟨“Y”⟩iW++⟨“X”⟩++⟨“Y”⟩i+1E

Proof

Step Hyp Ref Expression
1 clwwlknonex2.v V=VtxG
2 clwwlknonex2.e E=EdgG
3 simpl WWordVXVYVWWordV
4 3 adantr WWordVXVYVi0..^W1WWordV
5 elfzonn0 i0..^W1i0
6 5 adantl WWordVXVYVi0..^W1i0
7 lencl WWordVW0
8 elfzo0 i0..^W1i0W1i<W1
9 nn0re i0i
10 9 adantr i0W0i
11 nn0re W0W
12 peano2rem WW1
13 11 12 syl W0W1
14 13 adantl i0W0W1
15 11 adantl i0W0W
16 10 14 15 3jca i0W0iW1W
17 11 ltm1d W0W1<W
18 17 adantl i0W0W1<W
19 lttr iW1Wi<W1W1<Wi<W
20 19 expcomd iW1WW1<Wi<W1i<W
21 16 18 20 sylc i0W0i<W1i<W
22 21 impancom i0i<W1W0i<W
23 22 3adant2 i0W1i<W1W0i<W
24 8 23 sylbi i0..^W1W0i<W
25 7 24 syl5com WWordVi0..^W1i<W
26 25 adantr WWordVXVYVi0..^W1i<W
27 26 imp WWordVXVYVi0..^W1i<W
28 ccat2s1fvw WWordVi0i<WW++⟨“X”⟩++⟨“Y”⟩i=Wi
29 4 6 27 28 syl3anc WWordVXVYVi0..^W1W++⟨“X”⟩++⟨“Y”⟩i=Wi
30 29 eqcomd WWordVXVYVi0..^W1Wi=W++⟨“X”⟩++⟨“Y”⟩i
31 peano2nn0 i0i+10
32 6 31 syl WWordVXVYVi0..^W1i+10
33 1red i0W01
34 10 33 15 ltaddsubd i0W0i+1<Wi<W1
35 34 biimprd i0W0i<W1i+1<W
36 35 impancom i0i<W1W0i+1<W
37 36 3adant2 i0W1i<W1W0i+1<W
38 8 37 sylbi i0..^W1W0i+1<W
39 7 38 mpan9 WWordVi0..^W1i+1<W
40 39 adantlr WWordVXVYVi0..^W1i+1<W
41 ccat2s1fvw WWordVi+10i+1<WW++⟨“X”⟩++⟨“Y”⟩i+1=Wi+1
42 4 32 40 41 syl3anc WWordVXVYVi0..^W1W++⟨“X”⟩++⟨“Y”⟩i+1=Wi+1
43 42 eqcomd WWordVXVYVi0..^W1Wi+1=W++⟨“X”⟩++⟨“Y”⟩i+1
44 30 43 preq12d WWordVXVYVi0..^W1WiWi+1=W++⟨“X”⟩++⟨“Y”⟩iW++⟨“X”⟩++⟨“Y”⟩i+1
45 44 eleq1d WWordVXVYVi0..^W1WiWi+1EW++⟨“X”⟩++⟨“Y”⟩iW++⟨“X”⟩++⟨“Y”⟩i+1E
46 45 ralbidva WWordVXVYVi0..^W1WiWi+1Ei0..^W1W++⟨“X”⟩++⟨“Y”⟩iW++⟨“X”⟩++⟨“Y”⟩i+1E
47 46 biimpd WWordVXVYVi0..^W1WiWi+1Ei0..^W1W++⟨“X”⟩++⟨“Y”⟩iW++⟨“X”⟩++⟨“Y”⟩i+1E
48 47 impancom WWordVi0..^W1WiWi+1EXVYVi0..^W1W++⟨“X”⟩++⟨“Y”⟩iW++⟨“X”⟩++⟨“Y”⟩i+1E
49 48 3adant3 WWordVi0..^W1WiWi+1ElastSWW0EXVYVi0..^W1W++⟨“X”⟩++⟨“Y”⟩iW++⟨“X”⟩++⟨“Y”⟩i+1E
50 49 3ad2ant1 WWordVi0..^W1WiWi+1ElastSWW0EW=N2W0=XXVYVi0..^W1W++⟨“X”⟩++⟨“Y”⟩iW++⟨“X”⟩++⟨“Y”⟩i+1E
51 50 com12 XVYVWWordVi0..^W1WiWi+1ElastSWW0EW=N2W0=Xi0..^W1W++⟨“X”⟩++⟨“Y”⟩iW++⟨“X”⟩++⟨“Y”⟩i+1E
52 51 a1dd XVYVWWordVi0..^W1WiWi+1ElastSWW0EW=N2W0=XXYEi0..^W1W++⟨“X”⟩++⟨“Y”⟩iW++⟨“X”⟩++⟨“Y”⟩i+1E
53 52 3adant3 XVYVN3WWordVi0..^W1WiWi+1ElastSWW0EW=N2W0=XXYEi0..^W1W++⟨“X”⟩++⟨“Y”⟩iW++⟨“X”⟩++⟨“Y”⟩i+1E
54 53 imp31 XVYVN3WWordVi0..^W1WiWi+1ElastSWW0EW=N2W0=XXYEi0..^W1W++⟨“X”⟩++⟨“Y”⟩iW++⟨“X”⟩++⟨“Y”⟩i+1E
55 ax-1 XVYVXYEXVYV
56 55 3adant3 XVYVN3XYEXVYV
57 simpl WWordVN3W=N2WWordV
58 oveq1 W=N2W1=N-2-1
59 58 adantr W=N2N3W1=N-2-1
60 eluzelcn N3N
61 2cnd N32
62 1cnd N31
63 60 61 62 subsub4d N3N-2-1=N2+1
64 2p1e3 2+1=3
65 64 a1i N32+1=3
66 65 oveq2d N3N2+1=N3
67 uznn0sub N3N30
68 66 67 eqeltrd N3N2+10
69 63 68 eqeltrd N3N-2-10
70 69 adantl W=N2N3N-2-10
71 59 70 eqeltrd W=N2N3W10
72 71 ancoms N3W=N2W10
73 72 adantl WWordVN3W=N2W10
74 7 11 syl WWordVW
75 74 adantr WWordVN3W=N2W
76 75 ltm1d WWordVN3W=N2W1<W
77 57 73 76 3jca WWordVN3W=N2WWordVW10W1<W
78 77 ex WWordVN3W=N2WWordVW10W1<W
79 78 adantr WWordVlastSWW0EN3W=N2WWordVW10W1<W
80 79 3ad2ant1 WWordVlastSWW0EXVYVW0=XN3W=N2WWordVW10W1<W
81 80 imp WWordVlastSWW0EXVYVW0=XN3W=N2WWordVW10W1<W
82 ccat2s1fvw WWordVW10W1<WW++⟨“X”⟩++⟨“Y”⟩W1=WW1
83 81 82 syl WWordVlastSWW0EXVYVW0=XN3W=N2W++⟨“X”⟩++⟨“Y”⟩W1=WW1
84 nn0cn W0W
85 ax-1cn 1
86 npcan W1W-1+1=W
87 84 85 86 sylancl W0W-1+1=W
88 7 87 syl WWordVW-1+1=W
89 88 adantr WWordVlastSWW0EW-1+1=W
90 89 3ad2ant1 WWordVlastSWW0EXVYVW0=XW-1+1=W
91 90 fveq2d WWordVlastSWW0EXVYVW0=XW++⟨“X”⟩++⟨“Y”⟩W-1+1=W++⟨“X”⟩++⟨“Y”⟩W
92 simp1l WWordVlastSWW0EXVYVW0=XWWordV
93 eqidd WWordVlastSWW0EXVYVW0=XW=W
94 simp2l WWordVlastSWW0EXVYVW0=XXV
95 ccatw2s1p1 WWordVW=WXVW++⟨“X”⟩++⟨“Y”⟩W=X
96 92 93 94 95 syl3anc WWordVlastSWW0EXVYVW0=XW++⟨“X”⟩++⟨“Y”⟩W=X
97 91 96 eqtrd WWordVlastSWW0EXVYVW0=XW++⟨“X”⟩++⟨“Y”⟩W-1+1=X
98 97 adantr WWordVlastSWW0EXVYVW0=XN3W=N2W++⟨“X”⟩++⟨“Y”⟩W-1+1=X
99 83 98 preq12d WWordVlastSWW0EXVYVW0=XN3W=N2W++⟨“X”⟩++⟨“Y”⟩W1W++⟨“X”⟩++⟨“Y”⟩W-1+1=WW1X
100 lsw WWordVlastSW=WW1
101 100 adantl W0=XWWordVlastSW=WW1
102 simpl W0=XWWordVW0=X
103 101 102 preq12d W0=XWWordVlastSWW0=WW1X
104 103 eleq1d W0=XWWordVlastSWW0EWW1XE
105 104 biimpd W0=XWWordVlastSWW0EWW1XE
106 105 expcom WWordVW0=XlastSWW0EWW1XE
107 106 com23 WWordVlastSWW0EW0=XWW1XE
108 107 imp31 WWordVlastSWW0EW0=XWW1XE
109 108 3adant2 WWordVlastSWW0EXVYVW0=XWW1XE
110 109 adantr WWordVlastSWW0EXVYVW0=XN3W=N2WW1XE
111 99 110 eqeltrd WWordVlastSWW0EXVYVW0=XN3W=N2W++⟨“X”⟩++⟨“Y”⟩W1W++⟨“X”⟩++⟨“Y”⟩W-1+1E
112 111 exp520 WWordVlastSWW0EXVYVW0=XN3W=N2W++⟨“X”⟩++⟨“Y”⟩W1W++⟨“X”⟩++⟨“Y”⟩W-1+1E
113 112 com14 N3XVYVW0=XWWordVlastSWW0EW=N2W++⟨“X”⟩++⟨“Y”⟩W1W++⟨“X”⟩++⟨“Y”⟩W-1+1E
114 113 3ad2ant3 XVYVN3XVYVW0=XWWordVlastSWW0EW=N2W++⟨“X”⟩++⟨“Y”⟩W1W++⟨“X”⟩++⟨“Y”⟩W-1+1E
115 56 114 syld XVYVN3XYEW0=XWWordVlastSWW0EW=N2W++⟨“X”⟩++⟨“Y”⟩W1W++⟨“X”⟩++⟨“Y”⟩W-1+1E
116 115 com25 XVYVN3W=N2W0=XWWordVlastSWW0EXYEW++⟨“X”⟩++⟨“Y”⟩W1W++⟨“X”⟩++⟨“Y”⟩W-1+1E
117 116 com14 WWordVlastSWW0EW=N2W0=XXVYVN3XYEW++⟨“X”⟩++⟨“Y”⟩W1W++⟨“X”⟩++⟨“Y”⟩W-1+1E
118 117 3adant2 WWordVi0..^W1WiWi+1ElastSWW0EW=N2W0=XXVYVN3XYEW++⟨“X”⟩++⟨“Y”⟩W1W++⟨“X”⟩++⟨“Y”⟩W-1+1E
119 118 3imp WWordVi0..^W1WiWi+1ElastSWW0EW=N2W0=XXVYVN3XYEW++⟨“X”⟩++⟨“Y”⟩W1W++⟨“X”⟩++⟨“Y”⟩W-1+1E
120 119 impcom XVYVN3WWordVi0..^W1WiWi+1ElastSWW0EW=N2W0=XXYEW++⟨“X”⟩++⟨“Y”⟩W1W++⟨“X”⟩++⟨“Y”⟩W-1+1E
121 120 imp XVYVN3WWordVi0..^W1WiWi+1ElastSWW0EW=N2W0=XXYEW++⟨“X”⟩++⟨“Y”⟩W1W++⟨“X”⟩++⟨“Y”⟩W-1+1E
122 eqidd WWordVXVYVW=W
123 simprl WWordVXVYVXV
124 3 122 123 95 syl3anc WWordVXVYVW++⟨“X”⟩++⟨“Y”⟩W=X
125 eqid W=W
126 ccatw2s1p2 WWordVW=WXVYVW++⟨“X”⟩++⟨“Y”⟩W+1=Y
127 125 126 mpanl2 WWordVXVYVW++⟨“X”⟩++⟨“Y”⟩W+1=Y
128 124 127 preq12d WWordVXVYVW++⟨“X”⟩++⟨“Y”⟩WW++⟨“X”⟩++⟨“Y”⟩W+1=XY
129 128 expcom XVYVWWordVW++⟨“X”⟩++⟨“Y”⟩WW++⟨“X”⟩++⟨“Y”⟩W+1=XY
130 129 a1i XYEXVYVWWordVW++⟨“X”⟩++⟨“Y”⟩WW++⟨“X”⟩++⟨“Y”⟩W+1=XY
131 130 com13 WWordVXVYVXYEW++⟨“X”⟩++⟨“Y”⟩WW++⟨“X”⟩++⟨“Y”⟩W+1=XY
132 131 3ad2ant1 WWordVi0..^W1WiWi+1ElastSWW0EXVYVXYEW++⟨“X”⟩++⟨“Y”⟩WW++⟨“X”⟩++⟨“Y”⟩W+1=XY
133 132 3ad2ant1 WWordVi0..^W1WiWi+1ElastSWW0EW=N2W0=XXVYVXYEW++⟨“X”⟩++⟨“Y”⟩WW++⟨“X”⟩++⟨“Y”⟩W+1=XY
134 133 com12 XVYVWWordVi0..^W1WiWi+1ElastSWW0EW=N2W0=XXYEW++⟨“X”⟩++⟨“Y”⟩WW++⟨“X”⟩++⟨“Y”⟩W+1=XY
135 134 3adant3 XVYVN3WWordVi0..^W1WiWi+1ElastSWW0EW=N2W0=XXYEW++⟨“X”⟩++⟨“Y”⟩WW++⟨“X”⟩++⟨“Y”⟩W+1=XY
136 135 imp31 XVYVN3WWordVi0..^W1WiWi+1ElastSWW0EW=N2W0=XXYEW++⟨“X”⟩++⟨“Y”⟩WW++⟨“X”⟩++⟨“Y”⟩W+1=XY
137 simpr XVYVN3WWordVi0..^W1WiWi+1ElastSWW0EW=N2W0=XXYEXYE
138 136 137 eqeltrd XVYVN3WWordVi0..^W1WiWi+1ElastSWW0EW=N2W0=XXYEW++⟨“X”⟩++⟨“Y”⟩WW++⟨“X”⟩++⟨“Y”⟩W+1E
139 ovex W1V
140 fvex WV
141 fveq2 i=W1W++⟨“X”⟩++⟨“Y”⟩i=W++⟨“X”⟩++⟨“Y”⟩W1
142 fvoveq1 i=W1W++⟨“X”⟩++⟨“Y”⟩i+1=W++⟨“X”⟩++⟨“Y”⟩W-1+1
143 141 142 preq12d i=W1W++⟨“X”⟩++⟨“Y”⟩iW++⟨“X”⟩++⟨“Y”⟩i+1=W++⟨“X”⟩++⟨“Y”⟩W1W++⟨“X”⟩++⟨“Y”⟩W-1+1
144 143 eleq1d i=W1W++⟨“X”⟩++⟨“Y”⟩iW++⟨“X”⟩++⟨“Y”⟩i+1EW++⟨“X”⟩++⟨“Y”⟩W1W++⟨“X”⟩++⟨“Y”⟩W-1+1E
145 fveq2 i=WW++⟨“X”⟩++⟨“Y”⟩i=W++⟨“X”⟩++⟨“Y”⟩W
146 fvoveq1 i=WW++⟨“X”⟩++⟨“Y”⟩i+1=W++⟨“X”⟩++⟨“Y”⟩W+1
147 145 146 preq12d i=WW++⟨“X”⟩++⟨“Y”⟩iW++⟨“X”⟩++⟨“Y”⟩i+1=W++⟨“X”⟩++⟨“Y”⟩WW++⟨“X”⟩++⟨“Y”⟩W+1
148 147 eleq1d i=WW++⟨“X”⟩++⟨“Y”⟩iW++⟨“X”⟩++⟨“Y”⟩i+1EW++⟨“X”⟩++⟨“Y”⟩WW++⟨“X”⟩++⟨“Y”⟩W+1E
149 139 140 144 148 ralpr iW1WW++⟨“X”⟩++⟨“Y”⟩iW++⟨“X”⟩++⟨“Y”⟩i+1EW++⟨“X”⟩++⟨“Y”⟩W1W++⟨“X”⟩++⟨“Y”⟩W-1+1EW++⟨“X”⟩++⟨“Y”⟩WW++⟨“X”⟩++⟨“Y”⟩W+1E
150 121 138 149 sylanbrc XVYVN3WWordVi0..^W1WiWi+1ElastSWW0EW=N2W0=XXYEiW1WW++⟨“X”⟩++⟨“Y”⟩iW++⟨“X”⟩++⟨“Y”⟩i+1E
151 ralunb i0..^W1W1WW++⟨“X”⟩++⟨“Y”⟩iW++⟨“X”⟩++⟨“Y”⟩i+1Ei0..^W1W++⟨“X”⟩++⟨“Y”⟩iW++⟨“X”⟩++⟨“Y”⟩i+1EiW1WW++⟨“X”⟩++⟨“Y”⟩iW++⟨“X”⟩++⟨“Y”⟩i+1E
152 54 150 151 sylanbrc XVYVN3WWordVi0..^W1WiWi+1ElastSWW0EW=N2W0=XXYEi0..^W1W1WW++⟨“X”⟩++⟨“Y”⟩iW++⟨“X”⟩++⟨“Y”⟩i+1E