Metamath Proof Explorer


Theorem cnfldfunALT

Description: The field of complex numbers is a function. Alternate proof of cnfldfun not requiring that the index set of the components is ordered, but using quadratically many inequalities for the indices. (Contributed by AV, 14-Nov-2021) (Proof shortened by AV, 11-Nov-2024) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Assertion cnfldfunALT Funfld

Proof

Step Hyp Ref Expression
1 basendxnplusgndx Basendx+ndx
2 basendxnmulrndx Basendxndx
3 plusgndxnmulrndx +ndxndx
4 fvex BasendxV
5 fvex +ndxV
6 fvex ndxV
7 cnex V
8 addex +V
9 mulex ×V
10 4 5 6 7 8 9 funtp Basendx+ndxBasendxndx+ndxndxFunBasendx+ndx+ndx×
11 1 2 3 10 mp3an FunBasendx+ndx+ndx×
12 fvex *ndxV
13 cjf *:
14 fex *:V*V
15 13 7 14 mp2an *V
16 12 15 funsn Fun*ndx*
17 11 16 pm3.2i FunBasendx+ndx+ndx×Fun*ndx*
18 7 8 9 dmtpop domBasendx+ndx+ndx×=Basendx+ndxndx
19 15 dmsnop dom*ndx*=*ndx
20 18 19 ineq12i domBasendx+ndx+ndx×dom*ndx*=Basendx+ndxndx*ndx
21 starvndxnbasendx *ndxBasendx
22 21 necomi Basendx*ndx
23 starvndxnplusgndx *ndx+ndx
24 23 necomi +ndx*ndx
25 starvndxnmulrndx *ndxndx
26 25 necomi ndx*ndx
27 disjtpsn Basendx*ndx+ndx*ndxndx*ndxBasendx+ndxndx*ndx=
28 22 24 26 27 mp3an Basendx+ndxndx*ndx=
29 20 28 eqtri domBasendx+ndx+ndx×dom*ndx*=
30 funun FunBasendx+ndx+ndx×Fun*ndx*domBasendx+ndx+ndx×dom*ndx*=FunBasendx+ndx+ndx×*ndx*
31 17 29 30 mp2an FunBasendx+ndx+ndx×*ndx*
32 slotsdifplendx *ndxndxTopSetndxndx
33 32 simpri TopSetndxndx
34 dsndxntsetndx distndxTopSetndx
35 34 necomi TopSetndxdistndx
36 slotsdifdsndx *ndxdistndxndxdistndx
37 36 simpri ndxdistndx
38 fvex TopSetndxV
39 fvex ndxV
40 fvex distndxV
41 fvex MetOpenabsV
42 letsr TosetRel
43 42 elexi V
44 absf abs:
45 fex abs:VabsV
46 44 7 45 mp2an absV
47 subf :×
48 7 7 xpex ×V
49 fex :××VV
50 47 48 49 mp2an V
51 46 50 coex absV
52 38 39 40 41 43 51 funtp TopSetndxndxTopSetndxdistndxndxdistndxFunTopSetndxMetOpenabsndxdistndxabs
53 33 35 37 52 mp3an FunTopSetndxMetOpenabsndxdistndxabs
54 fvex UnifSetndxV
55 fvex metUnifabsV
56 54 55 funsn FunUnifSetndxmetUnifabs
57 53 56 pm3.2i FunTopSetndxMetOpenabsndxdistndxabsFunUnifSetndxmetUnifabs
58 41 43 51 dmtpop domTopSetndxMetOpenabsndxdistndxabs=TopSetndxndxdistndx
59 55 dmsnop domUnifSetndxmetUnifabs=UnifSetndx
60 58 59 ineq12i domTopSetndxMetOpenabsndxdistndxabsdomUnifSetndxmetUnifabs=TopSetndxndxdistndxUnifSetndx
61 slotsdifunifndx +ndxUnifSetndxndxUnifSetndx*ndxUnifSetndxndxUnifSetndxdistndxUnifSetndx
62 unifndxntsetndx UnifSetndxTopSetndx
63 62 necomi TopSetndxUnifSetndx
64 63 a1i +ndxUnifSetndxndxUnifSetndx*ndxUnifSetndxTopSetndxUnifSetndx
65 64 anim1i +ndxUnifSetndxndxUnifSetndx*ndxUnifSetndxndxUnifSetndxdistndxUnifSetndxTopSetndxUnifSetndxndxUnifSetndxdistndxUnifSetndx
66 3anass TopSetndxUnifSetndxndxUnifSetndxdistndxUnifSetndxTopSetndxUnifSetndxndxUnifSetndxdistndxUnifSetndx
67 65 66 sylibr +ndxUnifSetndxndxUnifSetndx*ndxUnifSetndxndxUnifSetndxdistndxUnifSetndxTopSetndxUnifSetndxndxUnifSetndxdistndxUnifSetndx
68 61 67 ax-mp TopSetndxUnifSetndxndxUnifSetndxdistndxUnifSetndx
69 disjtpsn TopSetndxUnifSetndxndxUnifSetndxdistndxUnifSetndxTopSetndxndxdistndxUnifSetndx=
70 68 69 ax-mp TopSetndxndxdistndxUnifSetndx=
71 60 70 eqtri domTopSetndxMetOpenabsndxdistndxabsdomUnifSetndxmetUnifabs=
72 funun FunTopSetndxMetOpenabsndxdistndxabsFunUnifSetndxmetUnifabsdomTopSetndxMetOpenabsndxdistndxabsdomUnifSetndxmetUnifabs=FunTopSetndxMetOpenabsndxdistndxabsUnifSetndxmetUnifabs
73 57 71 72 mp2an FunTopSetndxMetOpenabsndxdistndxabsUnifSetndxmetUnifabs
74 31 73 pm3.2i FunBasendx+ndx+ndx×*ndx*FunTopSetndxMetOpenabsndxdistndxabsUnifSetndxmetUnifabs
75 dmun domBasendx+ndx+ndx×*ndx*=domBasendx+ndx+ndx×dom*ndx*
76 dmun domTopSetndxMetOpenabsndxdistndxabsUnifSetndxmetUnifabs=domTopSetndxMetOpenabsndxdistndxabsdomUnifSetndxmetUnifabs
77 75 76 ineq12i domBasendx+ndx+ndx×*ndx*domTopSetndxMetOpenabsndxdistndxabsUnifSetndxmetUnifabs=domBasendx+ndx+ndx×dom*ndx*domTopSetndxMetOpenabsndxdistndxabsdomUnifSetndxmetUnifabs
78 18 58 ineq12i domBasendx+ndx+ndx×domTopSetndxMetOpenabsndxdistndxabs=Basendx+ndxndxTopSetndxndxdistndx
79 tsetndxnbasendx TopSetndxBasendx
80 79 necomi BasendxTopSetndx
81 tsetndxnplusgndx TopSetndx+ndx
82 81 necomi +ndxTopSetndx
83 tsetndxnmulrndx TopSetndxndx
84 83 necomi ndxTopSetndx
85 80 82 84 3pm3.2i BasendxTopSetndx+ndxTopSetndxndxTopSetndx
86 plendxnbasendx ndxBasendx
87 86 necomi Basendxndx
88 plendxnplusgndx ndx+ndx
89 88 necomi +ndxndx
90 plendxnmulrndx ndxndx
91 90 necomi ndxndx
92 87 89 91 3pm3.2i Basendxndx+ndxndxndxndx
93 dsndxnbasendx distndxBasendx
94 93 necomi Basendxdistndx
95 dsndxnplusgndx distndx+ndx
96 95 necomi +ndxdistndx
97 dsndxnmulrndx distndxndx
98 97 necomi ndxdistndx
99 94 96 98 3pm3.2i Basendxdistndx+ndxdistndxndxdistndx
100 disjtp2 BasendxTopSetndx+ndxTopSetndxndxTopSetndxBasendxndx+ndxndxndxndxBasendxdistndx+ndxdistndxndxdistndxBasendx+ndxndxTopSetndxndxdistndx=
101 85 92 99 100 mp3an Basendx+ndxndxTopSetndxndxdistndx=
102 78 101 eqtri domBasendx+ndx+ndx×domTopSetndxMetOpenabsndxdistndxabs=
103 18 59 ineq12i domBasendx+ndx+ndx×domUnifSetndxmetUnifabs=Basendx+ndxndxUnifSetndx
104 unifndxnbasendx UnifSetndxBasendx
105 104 necomi BasendxUnifSetndx
106 105 a1i +ndxUnifSetndxndxUnifSetndx*ndxUnifSetndxBasendxUnifSetndx
107 3simpa +ndxUnifSetndxndxUnifSetndx*ndxUnifSetndx+ndxUnifSetndxndxUnifSetndx
108 3anass BasendxUnifSetndx+ndxUnifSetndxndxUnifSetndxBasendxUnifSetndx+ndxUnifSetndxndxUnifSetndx
109 106 107 108 sylanbrc +ndxUnifSetndxndxUnifSetndx*ndxUnifSetndxBasendxUnifSetndx+ndxUnifSetndxndxUnifSetndx
110 109 adantr +ndxUnifSetndxndxUnifSetndx*ndxUnifSetndxndxUnifSetndxdistndxUnifSetndxBasendxUnifSetndx+ndxUnifSetndxndxUnifSetndx
111 61 110 ax-mp BasendxUnifSetndx+ndxUnifSetndxndxUnifSetndx
112 disjtpsn BasendxUnifSetndx+ndxUnifSetndxndxUnifSetndxBasendx+ndxndxUnifSetndx=
113 111 112 ax-mp Basendx+ndxndxUnifSetndx=
114 103 113 eqtri domBasendx+ndx+ndx×domUnifSetndxmetUnifabs=
115 102 114 pm3.2i domBasendx+ndx+ndx×domTopSetndxMetOpenabsndxdistndxabs=domBasendx+ndx+ndx×domUnifSetndxmetUnifabs=
116 undisj2 domBasendx+ndx+ndx×domTopSetndxMetOpenabsndxdistndxabs=domBasendx+ndx+ndx×domUnifSetndxmetUnifabs=domBasendx+ndx+ndx×domTopSetndxMetOpenabsndxdistndxabsdomUnifSetndxmetUnifabs=
117 115 116 mpbi domBasendx+ndx+ndx×domTopSetndxMetOpenabsndxdistndxabsdomUnifSetndxmetUnifabs=
118 19 58 ineq12i dom*ndx*domTopSetndxMetOpenabsndxdistndxabs=*ndxTopSetndxndxdistndx
119 tsetndxnstarvndx TopSetndx*ndx
120 necom *ndxndxndx*ndx
121 120 biimpi *ndxndxndx*ndx
122 121 adantr *ndxndxTopSetndxndxndx*ndx
123 32 122 ax-mp ndx*ndx
124 necom *ndxdistndxdistndx*ndx
125 124 biimpi *ndxdistndxdistndx*ndx
126 125 adantr *ndxdistndxndxdistndxdistndx*ndx
127 36 126 ax-mp distndx*ndx
128 disjtpsn TopSetndx*ndxndx*ndxdistndx*ndxTopSetndxndxdistndx*ndx=
129 119 123 127 128 mp3an TopSetndxndxdistndx*ndx=
130 129 ineqcomi *ndxTopSetndxndxdistndx=
131 118 130 eqtri dom*ndx*domTopSetndxMetOpenabsndxdistndxabs=
132 19 59 ineq12i dom*ndx*domUnifSetndxmetUnifabs=*ndxUnifSetndx
133 simpl3 +ndxUnifSetndxndxUnifSetndx*ndxUnifSetndxndxUnifSetndxdistndxUnifSetndx*ndxUnifSetndx
134 61 133 ax-mp *ndxUnifSetndx
135 disjsn2 *ndxUnifSetndx*ndxUnifSetndx=
136 134 135 ax-mp *ndxUnifSetndx=
137 132 136 eqtri dom*ndx*domUnifSetndxmetUnifabs=
138 131 137 pm3.2i dom*ndx*domTopSetndxMetOpenabsndxdistndxabs=dom*ndx*domUnifSetndxmetUnifabs=
139 undisj2 dom*ndx*domTopSetndxMetOpenabsndxdistndxabs=dom*ndx*domUnifSetndxmetUnifabs=dom*ndx*domTopSetndxMetOpenabsndxdistndxabsdomUnifSetndxmetUnifabs=
140 138 139 mpbi dom*ndx*domTopSetndxMetOpenabsndxdistndxabsdomUnifSetndxmetUnifabs=
141 117 140 pm3.2i domBasendx+ndx+ndx×domTopSetndxMetOpenabsndxdistndxabsdomUnifSetndxmetUnifabs=dom*ndx*domTopSetndxMetOpenabsndxdistndxabsdomUnifSetndxmetUnifabs=
142 undisj1 domBasendx+ndx+ndx×domTopSetndxMetOpenabsndxdistndxabsdomUnifSetndxmetUnifabs=dom*ndx*domTopSetndxMetOpenabsndxdistndxabsdomUnifSetndxmetUnifabs=domBasendx+ndx+ndx×dom*ndx*domTopSetndxMetOpenabsndxdistndxabsdomUnifSetndxmetUnifabs=
143 141 142 mpbi domBasendx+ndx+ndx×dom*ndx*domTopSetndxMetOpenabsndxdistndxabsdomUnifSetndxmetUnifabs=
144 77 143 eqtri domBasendx+ndx+ndx×*ndx*domTopSetndxMetOpenabsndxdistndxabsUnifSetndxmetUnifabs=
145 funun FunBasendx+ndx+ndx×*ndx*FunTopSetndxMetOpenabsndxdistndxabsUnifSetndxmetUnifabsdomBasendx+ndx+ndx×*ndx*domTopSetndxMetOpenabsndxdistndxabsUnifSetndxmetUnifabs=FunBasendx+ndx+ndx×*ndx*TopSetndxMetOpenabsndxdistndxabsUnifSetndxmetUnifabs
146 74 144 145 mp2an FunBasendx+ndx+ndx×*ndx*TopSetndxMetOpenabsndxdistndxabsUnifSetndxmetUnifabs
147 df-cnfld fld=Basendx+ndx+ndx×*ndx*TopSetndxMetOpenabsndxdistndxabsUnifSetndxmetUnifabs
148 147 funeqi FunfldFunBasendx+ndx+ndx×*ndx*TopSetndxMetOpenabsndxdistndxabsUnifSetndxmetUnifabs
149 146 148 mpbir Funfld