Metamath Proof Explorer


Theorem cnpconn

Description: An image of a path-connected space is path-connected. (Contributed by Mario Carneiro, 24-Mar-2015)

Ref Expression
Hypothesis cnpconn.2 Y=K
Assertion cnpconn JPConnF:XontoYFJCnKKPConn

Proof

Step Hyp Ref Expression
1 cnpconn.2 Y=K
2 cntop2 FJCnKKTop
3 2 3ad2ant3 JPConnF:XontoYFJCnKKTop
4 eqid J=J
5 4 pconncn JPConnuJvJgIICnJg0=ug1=v
6 5 3expb JPConnuJvJgIICnJg0=ug1=v
7 6 3ad2antl1 JPConnF:XontoYFJCnKuJvJgIICnJg0=ug1=v
8 simprl JPConnF:XontoYFJCnKuJvJgIICnJg0=ug1=vgIICnJ
9 simpll3 JPConnF:XontoYFJCnKuJvJgIICnJg0=ug1=vFJCnK
10 cnco gIICnJFJCnKFgIICnK
11 8 9 10 syl2anc JPConnF:XontoYFJCnKuJvJgIICnJg0=ug1=vFgIICnK
12 iiuni 01=II
13 12 4 cnf gIICnJg:01J
14 8 13 syl JPConnF:XontoYFJCnKuJvJgIICnJg0=ug1=vg:01J
15 0elunit 001
16 fvco3 g:01J001Fg0=Fg0
17 14 15 16 sylancl JPConnF:XontoYFJCnKuJvJgIICnJg0=ug1=vFg0=Fg0
18 simprrl JPConnF:XontoYFJCnKuJvJgIICnJg0=ug1=vg0=u
19 18 fveq2d JPConnF:XontoYFJCnKuJvJgIICnJg0=ug1=vFg0=Fu
20 17 19 eqtrd JPConnF:XontoYFJCnKuJvJgIICnJg0=ug1=vFg0=Fu
21 1elunit 101
22 fvco3 g:01J101Fg1=Fg1
23 14 21 22 sylancl JPConnF:XontoYFJCnKuJvJgIICnJg0=ug1=vFg1=Fg1
24 simprrr JPConnF:XontoYFJCnKuJvJgIICnJg0=ug1=vg1=v
25 24 fveq2d JPConnF:XontoYFJCnKuJvJgIICnJg0=ug1=vFg1=Fv
26 23 25 eqtrd JPConnF:XontoYFJCnKuJvJgIICnJg0=ug1=vFg1=Fv
27 fveq1 f=Fgf0=Fg0
28 27 eqeq1d f=Fgf0=FuFg0=Fu
29 fveq1 f=Fgf1=Fg1
30 29 eqeq1d f=Fgf1=FvFg1=Fv
31 28 30 anbi12d f=Fgf0=Fuf1=FvFg0=FuFg1=Fv
32 31 rspcev FgIICnKFg0=FuFg1=FvfIICnKf0=Fuf1=Fv
33 11 20 26 32 syl12anc JPConnF:XontoYFJCnKuJvJgIICnJg0=ug1=vfIICnKf0=Fuf1=Fv
34 7 33 rexlimddv JPConnF:XontoYFJCnKuJvJfIICnKf0=Fuf1=Fv
35 34 ralrimivva JPConnF:XontoYFJCnKuJvJfIICnKf0=Fuf1=Fv
36 4 1 cnf FJCnKF:JY
37 36 3ad2ant3 JPConnF:XontoYFJCnKF:JY
38 forn F:XontoYranF=Y
39 38 3ad2ant2 JPConnF:XontoYFJCnKranF=Y
40 dffo2 F:JontoYF:JYranF=Y
41 37 39 40 sylanbrc JPConnF:XontoYFJCnKF:JontoY
42 eqeq2 Fv=yf1=Fvf1=y
43 42 anbi2d Fv=yf0=Fuf1=Fvf0=Fuf1=y
44 43 rexbidv Fv=yfIICnKf0=Fuf1=FvfIICnKf0=Fuf1=y
45 44 cbvfo F:JontoYvJfIICnKf0=Fuf1=FvyYfIICnKf0=Fuf1=y
46 41 45 syl JPConnF:XontoYFJCnKvJfIICnKf0=Fuf1=FvyYfIICnKf0=Fuf1=y
47 46 ralbidv JPConnF:XontoYFJCnKuJvJfIICnKf0=Fuf1=FvuJyYfIICnKf0=Fuf1=y
48 35 47 mpbid JPConnF:XontoYFJCnKuJyYfIICnKf0=Fuf1=y
49 eqeq2 Fu=xf0=Fuf0=x
50 49 anbi1d Fu=xf0=Fuf1=yf0=xf1=y
51 50 rexbidv Fu=xfIICnKf0=Fuf1=yfIICnKf0=xf1=y
52 51 ralbidv Fu=xyYfIICnKf0=Fuf1=yyYfIICnKf0=xf1=y
53 52 cbvfo F:JontoYuJyYfIICnKf0=Fuf1=yxYyYfIICnKf0=xf1=y
54 41 53 syl JPConnF:XontoYFJCnKuJyYfIICnKf0=Fuf1=yxYyYfIICnKf0=xf1=y
55 48 54 mpbid JPConnF:XontoYFJCnKxYyYfIICnKf0=xf1=y
56 1 ispconn KPConnKTopxYyYfIICnKf0=xf1=y
57 3 55 56 sylanbrc JPConnF:XontoYFJCnKKPConn