Description: An image of a path-connected space is path-connected. (Contributed by Mario Carneiro, 24-Mar-2015)
Ref | Expression | ||
---|---|---|---|
Hypothesis | cnpconn.2 | |
|
Assertion | cnpconn | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cnpconn.2 | |
|
2 | cntop2 | |
|
3 | 2 | 3ad2ant3 | |
4 | eqid | |
|
5 | 4 | pconncn | |
6 | 5 | 3expb | |
7 | 6 | 3ad2antl1 | |
8 | simprl | |
|
9 | simpll3 | |
|
10 | cnco | |
|
11 | 8 9 10 | syl2anc | |
12 | iiuni | |
|
13 | 12 4 | cnf | |
14 | 8 13 | syl | |
15 | 0elunit | |
|
16 | fvco3 | |
|
17 | 14 15 16 | sylancl | |
18 | simprrl | |
|
19 | 18 | fveq2d | |
20 | 17 19 | eqtrd | |
21 | 1elunit | |
|
22 | fvco3 | |
|
23 | 14 21 22 | sylancl | |
24 | simprrr | |
|
25 | 24 | fveq2d | |
26 | 23 25 | eqtrd | |
27 | fveq1 | |
|
28 | 27 | eqeq1d | |
29 | fveq1 | |
|
30 | 29 | eqeq1d | |
31 | 28 30 | anbi12d | |
32 | 31 | rspcev | |
33 | 11 20 26 32 | syl12anc | |
34 | 7 33 | rexlimddv | |
35 | 34 | ralrimivva | |
36 | 4 1 | cnf | |
37 | 36 | 3ad2ant3 | |
38 | forn | |
|
39 | 38 | 3ad2ant2 | |
40 | dffo2 | |
|
41 | 37 39 40 | sylanbrc | |
42 | eqeq2 | |
|
43 | 42 | anbi2d | |
44 | 43 | rexbidv | |
45 | 44 | cbvfo | |
46 | 41 45 | syl | |
47 | 46 | ralbidv | |
48 | 35 47 | mpbid | |
49 | eqeq2 | |
|
50 | 49 | anbi1d | |
51 | 50 | rexbidv | |
52 | 51 | ralbidv | |
53 | 52 | cbvfo | |
54 | 41 53 | syl | |
55 | 48 54 | mpbid | |
56 | 1 | ispconn | |
57 | 3 55 56 | sylanbrc | |