Metamath Proof Explorer


Theorem cnpnei

Description: A condition for continuity at a point in terms of neighborhoods. (Contributed by Jeff Hankins, 7-Sep-2009)

Ref Expression
Hypotheses cnpnei.1 X=J
cnpnei.2 Y=K
Assertion cnpnei JTopKTopF:XYAXFJCnPKAyneiKFAF-1yneiJA

Proof

Step Hyp Ref Expression
1 cnpnei.1 X=J
2 cnpnei.2 Y=K
3 cnvimass F-1ydomF
4 fdm F:XYdomF=X
5 3 4 sseqtrid F:XYF-1yX
6 5 3ad2ant3 JTopKTopF:XYF-1yX
7 6 ad2antrr JTopKTopF:XYAXFJCnPKAyneiKFAF-1yX
8 neii2 KTopyneiKFAgKFAggy
9 8 3ad2antl2 JTopKTopF:XYyneiKFAgKFAggy
10 9 ad2ant2rl JTopKTopF:XYAXFJCnPKAyneiKFAgKFAggy
11 simpll FJCnPKAyneiKFAgKFAggyFJCnPKA
12 simprl FJCnPKAyneiKFAgKFAggygK
13 fvex FAV
14 13 snss FAgFAg
15 14 biimpri FAgFAg
16 15 adantr FAggyFAg
17 16 ad2antll FJCnPKAyneiKFAgKFAggyFAg
18 11 12 17 3jca FJCnPKAyneiKFAgKFAggyFJCnPKAgKFAg
19 18 adantll JTopKTopF:XYAXFJCnPKAyneiKFAgKFAggyFJCnPKAgKFAg
20 cnpimaex FJCnPKAgKFAgoJAoFog
21 19 20 syl JTopKTopF:XYAXFJCnPKAyneiKFAgKFAggyoJAoFog
22 sstr2 FoggyFoy
23 22 com12 gyFogFoy
24 23 ad2antll gKFAggyFogFoy
25 24 ad2antlr JTopKTopF:XYAXFJCnPKAyneiKFAgKFAggyoJFogFoy
26 ffun F:XYFunF
27 26 3ad2ant3 JTopKTopF:XYFunF
28 27 ad2antrr JTopKTopF:XYAXFJCnPKAyneiKFAFunF
29 28 ad2antrr JTopKTopF:XYAXFJCnPKAyneiKFAgKFAggyoJFunF
30 1 eltopss JTopoJoX
31 30 adantlr JTopF:XYoJoX
32 4 sseq2d F:XYodomFoX
33 32 ad2antlr JTopF:XYoJodomFoX
34 31 33 mpbird JTopF:XYoJodomF
35 34 3adantl2 JTopKTopF:XYoJodomF
36 35 adantlr JTopKTopF:XYAXoJodomF
37 36 ad4ant14 JTopKTopF:XYAXFJCnPKAyneiKFAgKFAggyoJodomF
38 funimass3 FunFodomFFoyoF-1y
39 29 37 38 syl2anc JTopKTopF:XYAXFJCnPKAyneiKFAgKFAggyoJFoyoF-1y
40 25 39 sylibd JTopKTopF:XYAXFJCnPKAyneiKFAgKFAggyoJFogoF-1y
41 40 anim2d JTopKTopF:XYAXFJCnPKAyneiKFAgKFAggyoJAoFogAooF-1y
42 41 reximdva JTopKTopF:XYAXFJCnPKAyneiKFAgKFAggyoJAoFogoJAooF-1y
43 21 42 mpd JTopKTopF:XYAXFJCnPKAyneiKFAgKFAggyoJAooF-1y
44 10 43 rexlimddv JTopKTopF:XYAXFJCnPKAyneiKFAoJAooF-1y
45 1 isneip JTopAXF-1yneiJAF-1yXoJAooF-1y
46 45 3ad2antl1 JTopKTopF:XYAXF-1yneiJAF-1yXoJAooF-1y
47 46 adantr JTopKTopF:XYAXFJCnPKAyneiKFAF-1yneiJAF-1yXoJAooF-1y
48 7 44 47 mpbir2and JTopKTopF:XYAXFJCnPKAyneiKFAF-1yneiJA
49 48 exp32 JTopKTopF:XYAXFJCnPKAyneiKFAF-1yneiJA
50 49 ralrimdv JTopKTopF:XYAXFJCnPKAyneiKFAF-1yneiJA
51 simpll3 JTopKTopF:XYAXyneiKFAF-1yneiJAF:XY
52 opnneip KTopoKFAooneiKFA
53 imaeq2 y=oF-1y=F-1o
54 53 eleq1d y=oF-1yneiJAF-1oneiJA
55 54 rspcv oneiKFAyneiKFAF-1yneiJAF-1oneiJA
56 52 55 syl KTopoKFAoyneiKFAF-1yneiJAF-1oneiJA
57 56 3com23 KTopFAooKyneiKFAF-1yneiJAF-1oneiJA
58 57 3expb KTopFAooKyneiKFAF-1yneiJAF-1oneiJA
59 58 3ad2antl2 JTopKTopF:XYFAooKyneiKFAF-1yneiJAF-1oneiJA
60 59 adantlr JTopKTopF:XYAXFAooKyneiKFAF-1yneiJAF-1oneiJA
61 neii2 JTopF-1oneiJAgJAggF-1o
62 61 ex JTopF-1oneiJAgJAggF-1o
63 62 3ad2ant1 JTopKTopF:XYF-1oneiJAgJAggF-1o
64 63 ad2antrr JTopKTopF:XYAXFAooKF-1oneiJAgJAggF-1o
65 snssg AXAgAg
66 65 ad3antlr JTopKTopF:XYAXFAooKgJAgAg
67 27 ad3antrrr JTopKTopF:XYAXFAooKgJFunF
68 1 eltopss JTopgJgX
69 68 3ad2antl1 JTopKTopF:XYgJgX
70 4 sseq2d F:XYgdomFgX
71 70 3ad2ant3 JTopKTopF:XYgdomFgX
72 71 biimpar JTopKTopF:XYgXgdomF
73 69 72 syldan JTopKTopF:XYgJgdomF
74 73 ad4ant14 JTopKTopF:XYAXFAooKgJgdomF
75 funimass3 FunFgdomFFgogF-1o
76 67 74 75 syl2anc JTopKTopF:XYAXFAooKgJFgogF-1o
77 66 76 anbi12d JTopKTopF:XYAXFAooKgJAgFgoAggF-1o
78 77 biimprd JTopKTopF:XYAXFAooKgJAggF-1oAgFgo
79 78 reximdva JTopKTopF:XYAXFAooKgJAggF-1ogJAgFgo
80 60 64 79 3syld JTopKTopF:XYAXFAooKyneiKFAF-1yneiJAgJAgFgo
81 80 exp32 JTopKTopF:XYAXFAooKyneiKFAF-1yneiJAgJAgFgo
82 81 com24 JTopKTopF:XYAXyneiKFAF-1yneiJAoKFAogJAgFgo
83 82 imp JTopKTopF:XYAXyneiKFAF-1yneiJAoKFAogJAgFgo
84 83 ralrimiv JTopKTopF:XYAXyneiKFAF-1yneiJAoKFAogJAgFgo
85 1 2 iscnp2 FJCnPKAJTopKTopAXF:XYoKFAogJAgFgo
86 85 baib JTopKTopAXFJCnPKAF:XYoKFAogJAgFgo
87 86 3expa JTopKTopAXFJCnPKAF:XYoKFAogJAgFgo
88 87 3adantl3 JTopKTopF:XYAXFJCnPKAF:XYoKFAogJAgFgo
89 88 adantr JTopKTopF:XYAXyneiKFAF-1yneiJAFJCnPKAF:XYoKFAogJAgFgo
90 51 84 89 mpbir2and JTopKTopF:XYAXyneiKFAF-1yneiJAFJCnPKA
91 90 ex JTopKTopF:XYAXyneiKFAF-1yneiJAFJCnPKA
92 50 91 impbid JTopKTopF:XYAXFJCnPKAyneiKFAF-1yneiJA