Metamath Proof Explorer


Theorem cnpwstotbnd

Description: A subset of A ^ I , where A C_ CC , is totally bounded iff it is bounded. (Contributed by Mario Carneiro, 14-Sep-2015)

Ref Expression
Hypotheses cnpwstotbnd.y Y=fld𝑠A𝑠I
cnpwstotbnd.d D=distYX×X
Assertion cnpwstotbnd AIFinDTotBndXDBndX

Proof

Step Hyp Ref Expression
1 cnpwstotbnd.y Y=fld𝑠A𝑠I
2 cnpwstotbnd.d D=distYX×X
3 eqid Scalarfld𝑠A𝑠I×fld𝑠A=Scalarfld𝑠A𝑠I×fld𝑠A
4 eqid BaseScalarfld𝑠A𝑠I×fld𝑠A=BaseScalarfld𝑠A𝑠I×fld𝑠A
5 eqid BaseI×fld𝑠Ax=BaseI×fld𝑠Ax
6 eqid distI×fld𝑠AxBaseI×fld𝑠Ax×BaseI×fld𝑠Ax=distI×fld𝑠AxBaseI×fld𝑠Ax×BaseI×fld𝑠Ax
7 eqid distScalarfld𝑠A𝑠I×fld𝑠A=distScalarfld𝑠A𝑠I×fld𝑠A
8 fvexd AIFinScalarfld𝑠AV
9 simpr AIFinIFin
10 ovex fld𝑠AV
11 fnconstg fld𝑠AVI×fld𝑠AFnI
12 10 11 mp1i AIFinI×fld𝑠AFnI
13 eqid distScalarfld𝑠A𝑠I×fld𝑠AX×X=distScalarfld𝑠A𝑠I×fld𝑠AX×X
14 cnfldms fldMetSp
15 cnex V
16 15 ssex AAV
17 16 ad2antrr AIFinxIAV
18 ressms fldMetSpAVfld𝑠AMetSp
19 14 17 18 sylancr AIFinxIfld𝑠AMetSp
20 eqid Basefld𝑠A=Basefld𝑠A
21 eqid distfld𝑠ABasefld𝑠A×Basefld𝑠A=distfld𝑠ABasefld𝑠A×Basefld𝑠A
22 20 21 msmet fld𝑠AMetSpdistfld𝑠ABasefld𝑠A×Basefld𝑠AMetBasefld𝑠A
23 19 22 syl AIFinxIdistfld𝑠ABasefld𝑠A×Basefld𝑠AMetBasefld𝑠A
24 10 fvconst2 xII×fld𝑠Ax=fld𝑠A
25 24 adantl AIFinxII×fld𝑠Ax=fld𝑠A
26 25 fveq2d AIFinxIdistI×fld𝑠Ax=distfld𝑠A
27 25 fveq2d AIFinxIBaseI×fld𝑠Ax=Basefld𝑠A
28 27 sqxpeqd AIFinxIBaseI×fld𝑠Ax×BaseI×fld𝑠Ax=Basefld𝑠A×Basefld𝑠A
29 26 28 reseq12d AIFinxIdistI×fld𝑠AxBaseI×fld𝑠Ax×BaseI×fld𝑠Ax=distfld𝑠ABasefld𝑠A×Basefld𝑠A
30 27 fveq2d AIFinxIMetBaseI×fld𝑠Ax=MetBasefld𝑠A
31 23 29 30 3eltr4d AIFinxIdistI×fld𝑠AxBaseI×fld𝑠Ax×BaseI×fld𝑠AxMetBaseI×fld𝑠Ax
32 totbndbnd distfld𝑠ABasefld𝑠A×Basefld𝑠Ay×yTotBndydistfld𝑠ABasefld𝑠A×Basefld𝑠Ay×yBndy
33 eqid fld𝑠A=fld𝑠A
34 cnfldbas =Basefld
35 33 34 ressbas2 AA=Basefld𝑠A
36 35 ad2antrr AIFinxIA=Basefld𝑠A
37 36 fveq2d AIFinxIMetA=MetBasefld𝑠A
38 23 37 eleqtrrd AIFinxIdistfld𝑠ABasefld𝑠A×Basefld𝑠AMetA
39 eqid distfld𝑠ABasefld𝑠A×Basefld𝑠Ay×y=distfld𝑠ABasefld𝑠A×Basefld𝑠Ay×y
40 39 bnd2lem distfld𝑠ABasefld𝑠A×Basefld𝑠AMetAdistfld𝑠ABasefld𝑠A×Basefld𝑠Ay×yBndyyA
41 40 ex distfld𝑠ABasefld𝑠A×Basefld𝑠AMetAdistfld𝑠ABasefld𝑠A×Basefld𝑠Ay×yBndyyA
42 38 41 syl AIFinxIdistfld𝑠ABasefld𝑠A×Basefld𝑠Ay×yBndyyA
43 32 42 syl5 AIFinxIdistfld𝑠ABasefld𝑠A×Basefld𝑠Ay×yTotBndyyA
44 eqid absy×y=absy×y
45 44 cntotbnd absy×yTotBndyabsy×yBndy
46 45 a1i AIFinxIyAabsy×yTotBndyabsy×yBndy
47 36 sseq2d AIFinxIyAyBasefld𝑠A
48 47 biimpa AIFinxIyAyBasefld𝑠A
49 xpss12 yBasefld𝑠AyBasefld𝑠Ay×yBasefld𝑠A×Basefld𝑠A
50 48 48 49 syl2anc AIFinxIyAy×yBasefld𝑠A×Basefld𝑠A
51 50 resabs1d AIFinxIyAdistfld𝑠ABasefld𝑠A×Basefld𝑠Ay×y=distfld𝑠Ay×y
52 17 adantr AIFinxIyAAV
53 cnfldds abs=distfld
54 33 53 ressds AVabs=distfld𝑠A
55 52 54 syl AIFinxIyAabs=distfld𝑠A
56 55 reseq1d AIFinxIyAabsy×y=distfld𝑠Ay×y
57 51 56 eqtr4d AIFinxIyAdistfld𝑠ABasefld𝑠A×Basefld𝑠Ay×y=absy×y
58 57 eleq1d AIFinxIyAdistfld𝑠ABasefld𝑠A×Basefld𝑠Ay×yTotBndyabsy×yTotBndy
59 57 eleq1d AIFinxIyAdistfld𝑠ABasefld𝑠A×Basefld𝑠Ay×yBndyabsy×yBndy
60 46 58 59 3bitr4d AIFinxIyAdistfld𝑠ABasefld𝑠A×Basefld𝑠Ay×yTotBndydistfld𝑠ABasefld𝑠A×Basefld𝑠Ay×yBndy
61 60 ex AIFinxIyAdistfld𝑠ABasefld𝑠A×Basefld𝑠Ay×yTotBndydistfld𝑠ABasefld𝑠A×Basefld𝑠Ay×yBndy
62 43 42 61 pm5.21ndd AIFinxIdistfld𝑠ABasefld𝑠A×Basefld𝑠Ay×yTotBndydistfld𝑠ABasefld𝑠A×Basefld𝑠Ay×yBndy
63 29 reseq1d AIFinxIdistI×fld𝑠AxBaseI×fld𝑠Ax×BaseI×fld𝑠Axy×y=distfld𝑠ABasefld𝑠A×Basefld𝑠Ay×y
64 63 eleq1d AIFinxIdistI×fld𝑠AxBaseI×fld𝑠Ax×BaseI×fld𝑠Axy×yTotBndydistfld𝑠ABasefld𝑠A×Basefld𝑠Ay×yTotBndy
65 63 eleq1d AIFinxIdistI×fld𝑠AxBaseI×fld𝑠Ax×BaseI×fld𝑠Axy×yBndydistfld𝑠ABasefld𝑠A×Basefld𝑠Ay×yBndy
66 62 64 65 3bitr4d AIFinxIdistI×fld𝑠AxBaseI×fld𝑠Ax×BaseI×fld𝑠Axy×yTotBndydistI×fld𝑠AxBaseI×fld𝑠Ax×BaseI×fld𝑠Axy×yBndy
67 3 4 5 6 7 8 9 12 13 31 66 prdsbnd2 AIFindistScalarfld𝑠A𝑠I×fld𝑠AX×XTotBndXdistScalarfld𝑠A𝑠I×fld𝑠AX×XBndX
68 eqid Scalarfld𝑠A=Scalarfld𝑠A
69 1 68 pwsval fld𝑠AVIFinY=Scalarfld𝑠A𝑠I×fld𝑠A
70 10 9 69 sylancr AIFinY=Scalarfld𝑠A𝑠I×fld𝑠A
71 70 fveq2d AIFindistY=distScalarfld𝑠A𝑠I×fld𝑠A
72 71 reseq1d AIFindistYX×X=distScalarfld𝑠A𝑠I×fld𝑠AX×X
73 2 72 eqtrid AIFinD=distScalarfld𝑠A𝑠I×fld𝑠AX×X
74 73 eleq1d AIFinDTotBndXdistScalarfld𝑠A𝑠I×fld𝑠AX×XTotBndX
75 73 eleq1d AIFinDBndXdistScalarfld𝑠A𝑠I×fld𝑠AX×XBndX
76 67 74 75 3bitr4d AIFinDTotBndXDBndX