Metamath Proof Explorer


Theorem cnpwstotbnd

Description: A subset of A ^ I , where A C_ CC , is totally bounded iff it is bounded. (Contributed by Mario Carneiro, 14-Sep-2015)

Ref Expression
Hypotheses cnpwstotbnd.y Y = fld 𝑠 A 𝑠 I
cnpwstotbnd.d D = dist Y X × X
Assertion cnpwstotbnd A I Fin D TotBnd X D Bnd X

Proof

Step Hyp Ref Expression
1 cnpwstotbnd.y Y = fld 𝑠 A 𝑠 I
2 cnpwstotbnd.d D = dist Y X × X
3 eqid Scalar fld 𝑠 A 𝑠 I × fld 𝑠 A = Scalar fld 𝑠 A 𝑠 I × fld 𝑠 A
4 eqid Base Scalar fld 𝑠 A 𝑠 I × fld 𝑠 A = Base Scalar fld 𝑠 A 𝑠 I × fld 𝑠 A
5 eqid Base I × fld 𝑠 A x = Base I × fld 𝑠 A x
6 eqid dist I × fld 𝑠 A x Base I × fld 𝑠 A x × Base I × fld 𝑠 A x = dist I × fld 𝑠 A x Base I × fld 𝑠 A x × Base I × fld 𝑠 A x
7 eqid dist Scalar fld 𝑠 A 𝑠 I × fld 𝑠 A = dist Scalar fld 𝑠 A 𝑠 I × fld 𝑠 A
8 fvexd A I Fin Scalar fld 𝑠 A V
9 simpr A I Fin I Fin
10 ovex fld 𝑠 A V
11 fnconstg fld 𝑠 A V I × fld 𝑠 A Fn I
12 10 11 mp1i A I Fin I × fld 𝑠 A Fn I
13 eqid dist Scalar fld 𝑠 A 𝑠 I × fld 𝑠 A X × X = dist Scalar fld 𝑠 A 𝑠 I × fld 𝑠 A X × X
14 cnfldms fld MetSp
15 cnex V
16 15 ssex A A V
17 16 ad2antrr A I Fin x I A V
18 ressms fld MetSp A V fld 𝑠 A MetSp
19 14 17 18 sylancr A I Fin x I fld 𝑠 A MetSp
20 eqid Base fld 𝑠 A = Base fld 𝑠 A
21 eqid dist fld 𝑠 A Base fld 𝑠 A × Base fld 𝑠 A = dist fld 𝑠 A Base fld 𝑠 A × Base fld 𝑠 A
22 20 21 msmet fld 𝑠 A MetSp dist fld 𝑠 A Base fld 𝑠 A × Base fld 𝑠 A Met Base fld 𝑠 A
23 19 22 syl A I Fin x I dist fld 𝑠 A Base fld 𝑠 A × Base fld 𝑠 A Met Base fld 𝑠 A
24 10 fvconst2 x I I × fld 𝑠 A x = fld 𝑠 A
25 24 adantl A I Fin x I I × fld 𝑠 A x = fld 𝑠 A
26 25 fveq2d A I Fin x I dist I × fld 𝑠 A x = dist fld 𝑠 A
27 25 fveq2d A I Fin x I Base I × fld 𝑠 A x = Base fld 𝑠 A
28 27 sqxpeqd A I Fin x I Base I × fld 𝑠 A x × Base I × fld 𝑠 A x = Base fld 𝑠 A × Base fld 𝑠 A
29 26 28 reseq12d A I Fin x I dist I × fld 𝑠 A x Base I × fld 𝑠 A x × Base I × fld 𝑠 A x = dist fld 𝑠 A Base fld 𝑠 A × Base fld 𝑠 A
30 27 fveq2d A I Fin x I Met Base I × fld 𝑠 A x = Met Base fld 𝑠 A
31 23 29 30 3eltr4d A I Fin x I dist I × fld 𝑠 A x Base I × fld 𝑠 A x × Base I × fld 𝑠 A x Met Base I × fld 𝑠 A x
32 totbndbnd dist fld 𝑠 A Base fld 𝑠 A × Base fld 𝑠 A y × y TotBnd y dist fld 𝑠 A Base fld 𝑠 A × Base fld 𝑠 A y × y Bnd y
33 eqid fld 𝑠 A = fld 𝑠 A
34 cnfldbas = Base fld
35 33 34 ressbas2 A A = Base fld 𝑠 A
36 35 ad2antrr A I Fin x I A = Base fld 𝑠 A
37 36 fveq2d A I Fin x I Met A = Met Base fld 𝑠 A
38 23 37 eleqtrrd A I Fin x I dist fld 𝑠 A Base fld 𝑠 A × Base fld 𝑠 A Met A
39 eqid dist fld 𝑠 A Base fld 𝑠 A × Base fld 𝑠 A y × y = dist fld 𝑠 A Base fld 𝑠 A × Base fld 𝑠 A y × y
40 39 bnd2lem dist fld 𝑠 A Base fld 𝑠 A × Base fld 𝑠 A Met A dist fld 𝑠 A Base fld 𝑠 A × Base fld 𝑠 A y × y Bnd y y A
41 40 ex dist fld 𝑠 A Base fld 𝑠 A × Base fld 𝑠 A Met A dist fld 𝑠 A Base fld 𝑠 A × Base fld 𝑠 A y × y Bnd y y A
42 38 41 syl A I Fin x I dist fld 𝑠 A Base fld 𝑠 A × Base fld 𝑠 A y × y Bnd y y A
43 32 42 syl5 A I Fin x I dist fld 𝑠 A Base fld 𝑠 A × Base fld 𝑠 A y × y TotBnd y y A
44 eqid abs y × y = abs y × y
45 44 cntotbnd abs y × y TotBnd y abs y × y Bnd y
46 45 a1i A I Fin x I y A abs y × y TotBnd y abs y × y Bnd y
47 36 sseq2d A I Fin x I y A y Base fld 𝑠 A
48 47 biimpa A I Fin x I y A y Base fld 𝑠 A
49 xpss12 y Base fld 𝑠 A y Base fld 𝑠 A y × y Base fld 𝑠 A × Base fld 𝑠 A
50 48 48 49 syl2anc A I Fin x I y A y × y Base fld 𝑠 A × Base fld 𝑠 A
51 50 resabs1d A I Fin x I y A dist fld 𝑠 A Base fld 𝑠 A × Base fld 𝑠 A y × y = dist fld 𝑠 A y × y
52 17 adantr A I Fin x I y A A V
53 cnfldds abs = dist fld
54 33 53 ressds A V abs = dist fld 𝑠 A
55 52 54 syl A I Fin x I y A abs = dist fld 𝑠 A
56 55 reseq1d A I Fin x I y A abs y × y = dist fld 𝑠 A y × y
57 51 56 eqtr4d A I Fin x I y A dist fld 𝑠 A Base fld 𝑠 A × Base fld 𝑠 A y × y = abs y × y
58 57 eleq1d A I Fin x I y A dist fld 𝑠 A Base fld 𝑠 A × Base fld 𝑠 A y × y TotBnd y abs y × y TotBnd y
59 57 eleq1d A I Fin x I y A dist fld 𝑠 A Base fld 𝑠 A × Base fld 𝑠 A y × y Bnd y abs y × y Bnd y
60 46 58 59 3bitr4d A I Fin x I y A dist fld 𝑠 A Base fld 𝑠 A × Base fld 𝑠 A y × y TotBnd y dist fld 𝑠 A Base fld 𝑠 A × Base fld 𝑠 A y × y Bnd y
61 60 ex A I Fin x I y A dist fld 𝑠 A Base fld 𝑠 A × Base fld 𝑠 A y × y TotBnd y dist fld 𝑠 A Base fld 𝑠 A × Base fld 𝑠 A y × y Bnd y
62 43 42 61 pm5.21ndd A I Fin x I dist fld 𝑠 A Base fld 𝑠 A × Base fld 𝑠 A y × y TotBnd y dist fld 𝑠 A Base fld 𝑠 A × Base fld 𝑠 A y × y Bnd y
63 29 reseq1d A I Fin x I dist I × fld 𝑠 A x Base I × fld 𝑠 A x × Base I × fld 𝑠 A x y × y = dist fld 𝑠 A Base fld 𝑠 A × Base fld 𝑠 A y × y
64 63 eleq1d A I Fin x I dist I × fld 𝑠 A x Base I × fld 𝑠 A x × Base I × fld 𝑠 A x y × y TotBnd y dist fld 𝑠 A Base fld 𝑠 A × Base fld 𝑠 A y × y TotBnd y
65 63 eleq1d A I Fin x I dist I × fld 𝑠 A x Base I × fld 𝑠 A x × Base I × fld 𝑠 A x y × y Bnd y dist fld 𝑠 A Base fld 𝑠 A × Base fld 𝑠 A y × y Bnd y
66 62 64 65 3bitr4d A I Fin x I dist I × fld 𝑠 A x Base I × fld 𝑠 A x × Base I × fld 𝑠 A x y × y TotBnd y dist I × fld 𝑠 A x Base I × fld 𝑠 A x × Base I × fld 𝑠 A x y × y Bnd y
67 3 4 5 6 7 8 9 12 13 31 66 prdsbnd2 A I Fin dist Scalar fld 𝑠 A 𝑠 I × fld 𝑠 A X × X TotBnd X dist Scalar fld 𝑠 A 𝑠 I × fld 𝑠 A X × X Bnd X
68 eqid Scalar fld 𝑠 A = Scalar fld 𝑠 A
69 1 68 pwsval fld 𝑠 A V I Fin Y = Scalar fld 𝑠 A 𝑠 I × fld 𝑠 A
70 10 9 69 sylancr A I Fin Y = Scalar fld 𝑠 A 𝑠 I × fld 𝑠 A
71 70 fveq2d A I Fin dist Y = dist Scalar fld 𝑠 A 𝑠 I × fld 𝑠 A
72 71 reseq1d A I Fin dist Y X × X = dist Scalar fld 𝑠 A 𝑠 I × fld 𝑠 A X × X
73 2 72 eqtrid A I Fin D = dist Scalar fld 𝑠 A 𝑠 I × fld 𝑠 A X × X
74 73 eleq1d A I Fin D TotBnd X dist Scalar fld 𝑠 A 𝑠 I × fld 𝑠 A X × X TotBnd X
75 73 eleq1d A I Fin D Bnd X dist Scalar fld 𝑠 A 𝑠 I × fld 𝑠 A X × X Bnd X
76 67 74 75 3bitr4d A I Fin D TotBnd X D Bnd X