Metamath Proof Explorer


Theorem cnrest2

Description: Equivalence of continuity in the parent topology and continuity in a subspace. (Contributed by Jeff Hankins, 10-Jul-2009) (Proof shortened by Mario Carneiro, 21-Aug-2015)

Ref Expression
Assertion cnrest2 KTopOnYranFBBYFJCnKFJCnK𝑡B

Proof

Step Hyp Ref Expression
1 cntop1 FJCnKJTop
2 1 a1i KTopOnYranFBBYFJCnKJTop
3 eqid J=J
4 eqid K=K
5 3 4 cnf FJCnKF:JK
6 5 ffnd FJCnKFFnJ
7 6 a1i KTopOnYranFBBYFJCnKFFnJ
8 simp2 KTopOnYranFBBYranFB
9 7 8 jctird KTopOnYranFBBYFJCnKFFnJranFB
10 df-f F:JBFFnJranFB
11 9 10 syl6ibr KTopOnYranFBBYFJCnKF:JB
12 2 11 jcad KTopOnYranFBBYFJCnKJTopF:JB
13 cntop1 FJCnK𝑡BJTop
14 13 adantl KTopOnYranFBBYFJCnK𝑡BJTop
15 toptopon2 JTopJTopOnJ
16 14 15 sylib KTopOnYranFBBYFJCnK𝑡BJTopOnJ
17 resttopon KTopOnYBYK𝑡BTopOnB
18 17 3adant2 KTopOnYranFBBYK𝑡BTopOnB
19 18 adantr KTopOnYranFBBYFJCnK𝑡BK𝑡BTopOnB
20 simpr KTopOnYranFBBYFJCnK𝑡BFJCnK𝑡B
21 cnf2 JTopOnJK𝑡BTopOnBFJCnK𝑡BF:JB
22 16 19 20 21 syl3anc KTopOnYranFBBYFJCnK𝑡BF:JB
23 14 22 jca KTopOnYranFBBYFJCnK𝑡BJTopF:JB
24 23 ex KTopOnYranFBBYFJCnK𝑡BJTopF:JB
25 vex xV
26 25 inex1 xBV
27 26 a1i KTopOnYranFBBYJTopF:JBxKxBV
28 simpl1 KTopOnYranFBBYJTopF:JBKTopOnY
29 toponmax KTopOnYYK
30 28 29 syl KTopOnYranFBBYJTopF:JBYK
31 simpl3 KTopOnYranFBBYJTopF:JBBY
32 30 31 ssexd KTopOnYranFBBYJTopF:JBBV
33 elrest KTopOnYBVyK𝑡BxKy=xB
34 28 32 33 syl2anc KTopOnYranFBBYJTopF:JByK𝑡BxKy=xB
35 imaeq2 y=xBF-1y=F-1xB
36 35 eleq1d y=xBF-1yJF-1xBJ
37 36 adantl KTopOnYranFBBYJTopF:JBy=xBF-1yJF-1xBJ
38 27 34 37 ralxfr2d KTopOnYranFBBYJTopF:JByK𝑡BF-1yJxKF-1xBJ
39 simplrr KTopOnYranFBBYJTopF:JBxKF:JB
40 ffun F:JBFunF
41 inpreima FunFF-1xB=F-1xF-1B
42 39 40 41 3syl KTopOnYranFBBYJTopF:JBxKF-1xB=F-1xF-1B
43 cnvimass F-1xdomF
44 cnvimarndm F-1ranF=domF
45 43 44 sseqtrri F-1xF-1ranF
46 simpll2 KTopOnYranFBBYJTopF:JBxKranFB
47 imass2 ranFBF-1ranFF-1B
48 46 47 syl KTopOnYranFBBYJTopF:JBxKF-1ranFF-1B
49 45 48 sstrid KTopOnYranFBBYJTopF:JBxKF-1xF-1B
50 df-ss F-1xF-1BF-1xF-1B=F-1x
51 49 50 sylib KTopOnYranFBBYJTopF:JBxKF-1xF-1B=F-1x
52 42 51 eqtrd KTopOnYranFBBYJTopF:JBxKF-1xB=F-1x
53 52 eleq1d KTopOnYranFBBYJTopF:JBxKF-1xBJF-1xJ
54 53 ralbidva KTopOnYranFBBYJTopF:JBxKF-1xBJxKF-1xJ
55 simprr KTopOnYranFBBYJTopF:JBF:JB
56 55 31 fssd KTopOnYranFBBYJTopF:JBF:JY
57 56 biantrurd KTopOnYranFBBYJTopF:JBxKF-1xJF:JYxKF-1xJ
58 38 54 57 3bitrrd KTopOnYranFBBYJTopF:JBF:JYxKF-1xJyK𝑡BF-1yJ
59 55 biantrurd KTopOnYranFBBYJTopF:JByK𝑡BF-1yJF:JByK𝑡BF-1yJ
60 58 59 bitrd KTopOnYranFBBYJTopF:JBF:JYxKF-1xJF:JByK𝑡BF-1yJ
61 simprl KTopOnYranFBBYJTopF:JBJTop
62 61 15 sylib KTopOnYranFBBYJTopF:JBJTopOnJ
63 iscn JTopOnJKTopOnYFJCnKF:JYxKF-1xJ
64 62 28 63 syl2anc KTopOnYranFBBYJTopF:JBFJCnKF:JYxKF-1xJ
65 18 adantr KTopOnYranFBBYJTopF:JBK𝑡BTopOnB
66 iscn JTopOnJK𝑡BTopOnBFJCnK𝑡BF:JByK𝑡BF-1yJ
67 62 65 66 syl2anc KTopOnYranFBBYJTopF:JBFJCnK𝑡BF:JByK𝑡BF-1yJ
68 60 64 67 3bitr4d KTopOnYranFBBYJTopF:JBFJCnKFJCnK𝑡B
69 68 ex KTopOnYranFBBYJTopF:JBFJCnKFJCnK𝑡B
70 12 24 69 pm5.21ndd KTopOnYranFBBYFJCnKFJCnK𝑡B