Description: Equivalence of continuity in the parent topology and continuity in a subspace. (Contributed by Jeff Hankins, 10-Jul-2009) (Proof shortened by Mario Carneiro, 21-Aug-2015)
Ref | Expression | ||
---|---|---|---|
Assertion | cnrest2 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cntop1 | |
|
2 | 1 | a1i | |
3 | eqid | |
|
4 | eqid | |
|
5 | 3 4 | cnf | |
6 | 5 | ffnd | |
7 | 6 | a1i | |
8 | simp2 | |
|
9 | 7 8 | jctird | |
10 | df-f | |
|
11 | 9 10 | syl6ibr | |
12 | 2 11 | jcad | |
13 | cntop1 | |
|
14 | 13 | adantl | |
15 | toptopon2 | |
|
16 | 14 15 | sylib | |
17 | resttopon | |
|
18 | 17 | 3adant2 | |
19 | 18 | adantr | |
20 | simpr | |
|
21 | cnf2 | |
|
22 | 16 19 20 21 | syl3anc | |
23 | 14 22 | jca | |
24 | 23 | ex | |
25 | vex | |
|
26 | 25 | inex1 | |
27 | 26 | a1i | |
28 | simpl1 | |
|
29 | toponmax | |
|
30 | 28 29 | syl | |
31 | simpl3 | |
|
32 | 30 31 | ssexd | |
33 | elrest | |
|
34 | 28 32 33 | syl2anc | |
35 | imaeq2 | |
|
36 | 35 | eleq1d | |
37 | 36 | adantl | |
38 | 27 34 37 | ralxfr2d | |
39 | simplrr | |
|
40 | ffun | |
|
41 | inpreima | |
|
42 | 39 40 41 | 3syl | |
43 | cnvimass | |
|
44 | cnvimarndm | |
|
45 | 43 44 | sseqtrri | |
46 | simpll2 | |
|
47 | imass2 | |
|
48 | 46 47 | syl | |
49 | 45 48 | sstrid | |
50 | df-ss | |
|
51 | 49 50 | sylib | |
52 | 42 51 | eqtrd | |
53 | 52 | eleq1d | |
54 | 53 | ralbidva | |
55 | simprr | |
|
56 | 55 31 | fssd | |
57 | 56 | biantrurd | |
58 | 38 54 57 | 3bitrrd | |
59 | 55 | biantrurd | |
60 | 58 59 | bitrd | |
61 | simprl | |
|
62 | 61 15 | sylib | |
63 | iscn | |
|
64 | 62 28 63 | syl2anc | |
65 | 18 | adantr | |
66 | iscn | |
|
67 | 62 65 66 | syl2anc | |
68 | 60 64 67 | 3bitr4d | |
69 | 68 | ex | |
70 | 12 24 69 | pm5.21ndd | |