Metamath Proof Explorer


Theorem cvmlift2lem13

Description: Lemma for cvmlift2 . (Contributed by Mario Carneiro, 7-May-2015)

Ref Expression
Hypotheses cvmlift2.b B = C
cvmlift2.f φ F C CovMap J
cvmlift2.g φ G II × t II Cn J
cvmlift2.p φ P B
cvmlift2.i φ F P = 0 G 0
cvmlift2.h H = ι f II Cn C | F f = z 0 1 z G 0 f 0 = P
cvmlift2.k K = x 0 1 , y 0 1 ι f II Cn C | F f = z 0 1 x G z f 0 = H x y
Assertion cvmlift2lem13 φ ∃! g II × t II Cn C F g = G 0 g 0 = P

Proof

Step Hyp Ref Expression
1 cvmlift2.b B = C
2 cvmlift2.f φ F C CovMap J
3 cvmlift2.g φ G II × t II Cn J
4 cvmlift2.p φ P B
5 cvmlift2.i φ F P = 0 G 0
6 cvmlift2.h H = ι f II Cn C | F f = z 0 1 z G 0 f 0 = P
7 cvmlift2.k K = x 0 1 , y 0 1 ι f II Cn C | F f = z 0 1 x G z f 0 = H x y
8 fveq2 a = z II × t II CnP C a = II × t II CnP C z
9 8 eleq2d a = z K II × t II CnP C a K II × t II CnP C z
10 9 cbvrabv a 0 1 × 0 1 | K II × t II CnP C a = z 0 1 × 0 1 | K II × t II CnP C z
11 sneq z = b z = b
12 11 xpeq2d z = b 0 1 × z = 0 1 × b
13 12 sseq1d z = b 0 1 × z a 0 1 × 0 1 | K II × t II CnP C a 0 1 × b a 0 1 × 0 1 | K II × t II CnP C a
14 13 cbvrabv z 0 1 | 0 1 × z a 0 1 × 0 1 | K II × t II CnP C a = b 0 1 | 0 1 × b a 0 1 × 0 1 | K II × t II CnP C a
15 simpr c = r d = t d = t
16 15 eleq1d c = r d = t d 0 1 t 0 1
17 xpeq1 v = u v × b = u × b
18 17 sseq1d v = u v × b a 0 1 × 0 1 | K II × t II CnP C a u × b a 0 1 × 0 1 | K II × t II CnP C a
19 xpeq1 v = u v × d = u × d
20 19 sseq1d v = u v × d a 0 1 × 0 1 | K II × t II CnP C a u × d a 0 1 × 0 1 | K II × t II CnP C a
21 18 20 bibi12d v = u v × b a 0 1 × 0 1 | K II × t II CnP C a v × d a 0 1 × 0 1 | K II × t II CnP C a u × b a 0 1 × 0 1 | K II × t II CnP C a u × d a 0 1 × 0 1 | K II × t II CnP C a
22 21 cbvrexvw v nei II c v × b a 0 1 × 0 1 | K II × t II CnP C a v × d a 0 1 × 0 1 | K II × t II CnP C a u nei II c u × b a 0 1 × 0 1 | K II × t II CnP C a u × d a 0 1 × 0 1 | K II × t II CnP C a
23 simpl c = r d = t c = r
24 23 sneqd c = r d = t c = r
25 24 fveq2d c = r d = t nei II c = nei II r
26 15 sneqd c = r d = t d = t
27 26 xpeq2d c = r d = t u × d = u × t
28 27 sseq1d c = r d = t u × d a 0 1 × 0 1 | K II × t II CnP C a u × t a 0 1 × 0 1 | K II × t II CnP C a
29 28 bibi2d c = r d = t u × b a 0 1 × 0 1 | K II × t II CnP C a u × d a 0 1 × 0 1 | K II × t II CnP C a u × b a 0 1 × 0 1 | K II × t II CnP C a u × t a 0 1 × 0 1 | K II × t II CnP C a
30 25 29 rexeqbidv c = r d = t u nei II c u × b a 0 1 × 0 1 | K II × t II CnP C a u × d a 0 1 × 0 1 | K II × t II CnP C a u nei II r u × b a 0 1 × 0 1 | K II × t II CnP C a u × t a 0 1 × 0 1 | K II × t II CnP C a
31 22 30 syl5bb c = r d = t v nei II c v × b a 0 1 × 0 1 | K II × t II CnP C a v × d a 0 1 × 0 1 | K II × t II CnP C a u nei II r u × b a 0 1 × 0 1 | K II × t II CnP C a u × t a 0 1 × 0 1 | K II × t II CnP C a
32 16 31 anbi12d c = r d = t d 0 1 v nei II c v × b a 0 1 × 0 1 | K II × t II CnP C a v × d a 0 1 × 0 1 | K II × t II CnP C a t 0 1 u nei II r u × b a 0 1 × 0 1 | K II × t II CnP C a u × t a 0 1 × 0 1 | K II × t II CnP C a
33 32 cbvopabv c d | d 0 1 v nei II c v × b a 0 1 × 0 1 | K II × t II CnP C a v × d a 0 1 × 0 1 | K II × t II CnP C a = r t | t 0 1 u nei II r u × b a 0 1 × 0 1 | K II × t II CnP C a u × t a 0 1 × 0 1 | K II × t II CnP C a
34 1 2 3 4 5 6 7 10 14 33 cvmlift2lem12 φ K II × t II Cn C
35 1 2 3 4 5 6 7 cvmlift2lem7 φ F K = G
36 0elunit 0 0 1
37 1 2 3 4 5 6 7 cvmlift2lem8 φ 0 0 1 0 K 0 = H 0
38 36 37 mpan2 φ 0 K 0 = H 0
39 1 2 3 4 5 6 cvmlift2lem2 φ H II Cn C F H = z 0 1 z G 0 H 0 = P
40 39 simp3d φ H 0 = P
41 38 40 eqtrd φ 0 K 0 = P
42 coeq2 g = K F g = F K
43 42 eqeq1d g = K F g = G F K = G
44 oveq g = K 0 g 0 = 0 K 0
45 44 eqeq1d g = K 0 g 0 = P 0 K 0 = P
46 43 45 anbi12d g = K F g = G 0 g 0 = P F K = G 0 K 0 = P
47 46 rspcev K II × t II Cn C F K = G 0 K 0 = P g II × t II Cn C F g = G 0 g 0 = P
48 34 35 41 47 syl12anc φ g II × t II Cn C F g = G 0 g 0 = P
49 iitop II Top
50 iiuni 0 1 = II
51 49 49 50 50 txunii 0 1 × 0 1 = II × t II
52 iiconn II Conn
53 txconn II Conn II Conn II × t II Conn
54 52 52 53 mp2an II × t II Conn
55 54 a1i φ II × t II Conn
56 iinllyconn II N-Locally Conn
57 txconn x Conn y Conn x × t y Conn
58 57 txnlly II N-Locally Conn II N-Locally Conn II × t II N-Locally Conn
59 56 56 58 mp2an II × t II N-Locally Conn
60 59 a1i φ II × t II N-Locally Conn
61 opelxpi 0 0 1 0 0 1 0 0 0 1 × 0 1
62 36 36 61 mp2an 0 0 0 1 × 0 1
63 62 a1i φ 0 0 0 1 × 0 1
64 df-ov 0 G 0 = G 0 0
65 5 64 eqtrdi φ F P = G 0 0
66 1 51 2 55 60 63 3 4 65 cvmliftmo φ * g II × t II Cn C F g = G g 0 0 = P
67 df-ov 0 g 0 = g 0 0
68 67 eqeq1i 0 g 0 = P g 0 0 = P
69 68 anbi2i F g = G 0 g 0 = P F g = G g 0 0 = P
70 69 rmobii * g II × t II Cn C F g = G 0 g 0 = P * g II × t II Cn C F g = G g 0 0 = P
71 66 70 sylibr φ * g II × t II Cn C F g = G 0 g 0 = P
72 reu5 ∃! g II × t II Cn C F g = G 0 g 0 = P g II × t II Cn C F g = G 0 g 0 = P * g II × t II Cn C F g = G 0 g 0 = P
73 48 71 72 sylanbrc φ ∃! g II × t II Cn C F g = G 0 g 0 = P