Metamath Proof Explorer


Theorem cvmlift3lem4

Description: Lemma for cvmlift2 . (Contributed by Mario Carneiro, 6-Jul-2015)

Ref Expression
Hypotheses cvmlift3.b B=C
cvmlift3.y Y=K
cvmlift3.f φFCCovMapJ
cvmlift3.k φKSConn
cvmlift3.l φKN-Locally PConn
cvmlift3.o φOY
cvmlift3.g φGKCnJ
cvmlift3.p φPB
cvmlift3.e φFP=GO
cvmlift3.h H=xYιzB|fIICnKf0=Of1=xιgIICnC|Fg=Gfg0=P1=z
Assertion cvmlift3lem4 φXYHX=AfIICnKf0=Of1=XιgIICnC|Fg=Gfg0=P1=A

Proof

Step Hyp Ref Expression
1 cvmlift3.b B=C
2 cvmlift3.y Y=K
3 cvmlift3.f φFCCovMapJ
4 cvmlift3.k φKSConn
5 cvmlift3.l φKN-Locally PConn
6 cvmlift3.o φOY
7 cvmlift3.g φGKCnJ
8 cvmlift3.p φPB
9 cvmlift3.e φFP=GO
10 cvmlift3.h H=xYιzB|fIICnKf0=Of1=xιgIICnC|Fg=Gfg0=P1=z
11 1 2 3 4 5 6 7 8 9 10 cvmlift3lem3 φH:YB
12 11 ffvelcdmda φXYHXB
13 eleq1 HX=AHXBAB
14 12 13 syl5ibcom φXYHX=AAB
15 eqid ιgIICnC|Fg=Gfg0=P=ιgIICnC|Fg=Gfg0=P
16 3 ad2antrr φXYfIICnKf0=OFCCovMapJ
17 simprl φXYfIICnKf0=OfIICnK
18 7 ad2antrr φXYfIICnKf0=OGKCnJ
19 cnco fIICnKGKCnJGfIICnJ
20 17 18 19 syl2anc φXYfIICnKf0=OGfIICnJ
21 8 ad2antrr φXYfIICnKf0=OPB
22 simprr φXYfIICnKf0=Of0=O
23 22 fveq2d φXYfIICnKf0=OGf0=GO
24 iiuni 01=II
25 24 2 cnf fIICnKf:01Y
26 17 25 syl φXYfIICnKf0=Of:01Y
27 0elunit 001
28 fvco3 f:01Y001Gf0=Gf0
29 26 27 28 sylancl φXYfIICnKf0=OGf0=Gf0
30 9 ad2antrr φXYfIICnKf0=OFP=GO
31 23 29 30 3eqtr4rd φXYfIICnKf0=OFP=Gf0
32 1 15 16 20 21 31 cvmliftiota φXYfIICnKf0=OιgIICnC|Fg=Gfg0=PIICnCFιgIICnC|Fg=Gfg0=P=GfιgIICnC|Fg=Gfg0=P0=P
33 32 simp1d φXYfIICnKf0=OιgIICnC|Fg=Gfg0=PIICnC
34 24 1 cnf ιgIICnC|Fg=Gfg0=PIICnCιgIICnC|Fg=Gfg0=P:01B
35 33 34 syl φXYfIICnKf0=OιgIICnC|Fg=Gfg0=P:01B
36 1elunit 101
37 ffvelcdm ιgIICnC|Fg=Gfg0=P:01B101ιgIICnC|Fg=Gfg0=P1B
38 35 36 37 sylancl φXYfIICnKf0=OιgIICnC|Fg=Gfg0=P1B
39 eleq1 ιgIICnC|Fg=Gfg0=P1=AιgIICnC|Fg=Gfg0=P1BAB
40 38 39 syl5ibcom φXYfIICnKf0=OιgIICnC|Fg=Gfg0=P1=AAB
41 40 expr φXYfIICnKf0=OιgIICnC|Fg=Gfg0=P1=AAB
42 41 a1dd φXYfIICnKf0=Of1=XιgIICnC|Fg=Gfg0=P1=AAB
43 42 3impd φXYfIICnKf0=Of1=XιgIICnC|Fg=Gfg0=P1=AAB
44 43 rexlimdva φXYfIICnKf0=Of1=XιgIICnC|Fg=Gfg0=P1=AAB
45 eqeq2 x=Xf1=xf1=X
46 45 3anbi2d x=Xf0=Of1=xιgIICnC|Fg=Gfg0=P1=zf0=Of1=XιgIICnC|Fg=Gfg0=P1=z
47 46 rexbidv x=XfIICnKf0=Of1=xιgIICnC|Fg=Gfg0=P1=zfIICnKf0=Of1=XιgIICnC|Fg=Gfg0=P1=z
48 47 riotabidv x=XιzB|fIICnKf0=Of1=xιgIICnC|Fg=Gfg0=P1=z=ιzB|fIICnKf0=Of1=XιgIICnC|Fg=Gfg0=P1=z
49 riotaex ιzB|fIICnKf0=Of1=XιgIICnC|Fg=Gfg0=P1=zV
50 48 10 49 fvmpt XYHX=ιzB|fIICnKf0=Of1=XιgIICnC|Fg=Gfg0=P1=z
51 50 adantl φXYHX=ιzB|fIICnKf0=Of1=XιgIICnC|Fg=Gfg0=P1=z
52 51 eqeq1d φXYHX=AιzB|fIICnKf0=Of1=XιgIICnC|Fg=Gfg0=P1=z=A
53 52 adantl ABφXYHX=AιzB|fIICnKf0=Of1=XιgIICnC|Fg=Gfg0=P1=z=A
54 1 2 3 4 5 6 7 8 9 cvmlift3lem2 φXY∃!zBfIICnKf0=Of1=XιgIICnC|Fg=Gfg0=P1=z
55 eqeq2 z=AιgIICnC|Fg=Gfg0=P1=zιgIICnC|Fg=Gfg0=P1=A
56 55 3anbi3d z=Af0=Of1=XιgIICnC|Fg=Gfg0=P1=zf0=Of1=XιgIICnC|Fg=Gfg0=P1=A
57 56 rexbidv z=AfIICnKf0=Of1=XιgIICnC|Fg=Gfg0=P1=zfIICnKf0=Of1=XιgIICnC|Fg=Gfg0=P1=A
58 57 riota2 AB∃!zBfIICnKf0=Of1=XιgIICnC|Fg=Gfg0=P1=zfIICnKf0=Of1=XιgIICnC|Fg=Gfg0=P1=AιzB|fIICnKf0=Of1=XιgIICnC|Fg=Gfg0=P1=z=A
59 54 58 sylan2 ABφXYfIICnKf0=Of1=XιgIICnC|Fg=Gfg0=P1=AιzB|fIICnKf0=Of1=XιgIICnC|Fg=Gfg0=P1=z=A
60 53 59 bitr4d ABφXYHX=AfIICnKf0=Of1=XιgIICnC|Fg=Gfg0=P1=A
61 60 expcom φXYABHX=AfIICnKf0=Of1=XιgIICnC|Fg=Gfg0=P1=A
62 14 44 61 pm5.21ndd φXYHX=AfIICnKf0=Of1=XιgIICnC|Fg=Gfg0=P1=A