Metamath Proof Explorer


Theorem cxple2

Description: Ordering property for complex exponentiation. (Contributed by Mario Carneiro, 8-Sep-2014)

Ref Expression
Assertion cxple2 A0AB0BC+ABACBC

Proof

Step Hyp Ref Expression
1 simpl1l A0AB0BC+0<AA
2 simpr A0AB0BC+0<A0<A
3 1 2 elrpd A0AB0BC+0<AA+
4 3 adantr A0AB0BC+0<A0<BA+
5 simp2l A0AB0BC+B
6 5 ad2antrr A0AB0BC+0<A0<BB
7 simpr A0AB0BC+0<A0<B0<B
8 6 7 elrpd A0AB0BC+0<A0<BB+
9 simp3 A0AB0BC+C+
10 9 ad2antrr A0AB0BC+0<A0<BC+
11 simp3 A+B+C+C+
12 11 rpred A+B+C+C
13 relogcl A+logA
14 13 3ad2ant1 A+B+C+logA
15 12 14 remulcld A+B+C+ClogA
16 relogcl B+logB
17 16 3ad2ant2 A+B+C+logB
18 12 17 remulcld A+B+C+ClogB
19 efle ClogAClogBClogAClogBeClogAeClogB
20 15 18 19 syl2anc A+B+C+ClogAClogBeClogAeClogB
21 efle logAlogBlogAlogBelogAelogB
22 14 17 21 syl2anc A+B+C+logAlogBelogAelogB
23 14 17 11 lemul2d A+B+C+logAlogBClogAClogB
24 reeflog A+elogA=A
25 24 3ad2ant1 A+B+C+elogA=A
26 reeflog B+elogB=B
27 26 3ad2ant2 A+B+C+elogB=B
28 25 27 breq12d A+B+C+elogAelogBAB
29 22 23 28 3bitr3rd A+B+C+ABClogAClogB
30 rpre A+A
31 30 3ad2ant1 A+B+C+A
32 31 recnd A+B+C+A
33 rpne0 A+A0
34 33 3ad2ant1 A+B+C+A0
35 12 recnd A+B+C+C
36 cxpef AA0CAC=eClogA
37 32 34 35 36 syl3anc A+B+C+AC=eClogA
38 rpre B+B
39 38 3ad2ant2 A+B+C+B
40 39 recnd A+B+C+B
41 rpne0 B+B0
42 41 3ad2ant2 A+B+C+B0
43 cxpef BB0CBC=eClogB
44 40 42 35 43 syl3anc A+B+C+BC=eClogB
45 37 44 breq12d A+B+C+ACBCeClogAeClogB
46 20 29 45 3bitr4d A+B+C+ABACBC
47 4 8 10 46 syl3anc A0AB0BC+0<A0<BABACBC
48 0re 0
49 simp1l A0AB0BC+A
50 ltnle 0A0<A¬A0
51 48 49 50 sylancr A0AB0BC+0<A¬A0
52 51 biimpa A0AB0BC+0<A¬A0
53 9 rpred A0AB0BC+C
54 53 adantr A0AB0BC+0<AC
55 rpcxpcl A+CAC+
56 3 54 55 syl2anc A0AB0BC+0<AAC+
57 rpgt0 AC+0<AC
58 rpre AC+AC
59 ltnle 0AC0<AC¬AC0
60 48 58 59 sylancr AC+0<AC¬AC0
61 57 60 mpbid AC+¬AC0
62 56 61 syl A0AB0BC+0<A¬AC0
63 53 recnd A0AB0BC+C
64 9 rpne0d A0AB0BC+C0
65 0cxp CC00C=0
66 63 64 65 syl2anc A0AB0BC+0C=0
67 66 adantr A0AB0BC+0<A0C=0
68 67 breq2d A0AB0BC+0<AAC0CAC0
69 62 68 mtbird A0AB0BC+0<A¬AC0C
70 52 69 2falsed A0AB0BC+0<AA0AC0C
71 breq2 0=BA0AB
72 oveq1 0=B0C=BC
73 72 breq2d 0=BAC0CACBC
74 71 73 bibi12d 0=BA0AC0CABACBC
75 70 74 syl5ibcom A0AB0BC+0<A0=BABACBC
76 75 imp A0AB0BC+0<A0=BABACBC
77 simp2r A0AB0BC+0B
78 leloe 0B0B0<B0=B
79 48 5 78 sylancr A0AB0BC+0B0<B0=B
80 77 79 mpbid A0AB0BC+0<B0=B
81 80 adantr A0AB0BC+0<A0<B0=B
82 47 76 81 mpjaodan A0AB0BC+0<AABACBC
83 simpr A0AB0BC+0=A0=A
84 simpl2r A0AB0BC+0=A0B
85 83 84 eqbrtrrd A0AB0BC+0=AAB
86 66 adantr A0AB0BC+0=A0C=0
87 83 oveq1d A0AB0BC+0=A0C=AC
88 86 87 eqtr3d A0AB0BC+0=A0=AC
89 simpl2l A0AB0BC+0=AB
90 53 adantr A0AB0BC+0=AC
91 cxpge0 B0BC0BC
92 89 84 90 91 syl3anc A0AB0BC+0=A0BC
93 88 92 eqbrtrrd A0AB0BC+0=AACBC
94 85 93 2thd A0AB0BC+0=AABACBC
95 simp1r A0AB0BC+0A
96 leloe 0A0A0<A0=A
97 48 49 96 sylancr A0AB0BC+0A0<A0=A
98 95 97 mpbid A0AB0BC+0<A0=A
99 82 94 98 mpjaodan A0AB0BC+ABACBC