Metamath Proof Explorer


Theorem cycpmco2rn

Description: The orbit of the composition of a cyclic permutation and a well-chosen transposition is one element more than the orbit of the original permutation. (Contributed by Thierry Arnoux, 4-Jan-2024)

Ref Expression
Hypotheses cycpmco2.c M=toCycD
cycpmco2.s S=SymGrpD
cycpmco2.d φDV
cycpmco2.w φWdomM
cycpmco2.i φIDranW
cycpmco2.j φJranW
cycpmco2.e E=W-1J+1
cycpmco2.1 U=WspliceEE⟨“I”⟩
Assertion cycpmco2rn φranU=ranWI

Proof

Step Hyp Ref Expression
1 cycpmco2.c M=toCycD
2 cycpmco2.s S=SymGrpD
3 cycpmco2.d φDV
4 cycpmco2.w φWdomM
5 cycpmco2.i φIDranW
6 cycpmco2.j φJranW
7 cycpmco2.e E=W-1J+1
8 cycpmco2.1 U=WspliceEE⟨“I”⟩
9 un23 W0..^EIWE..^W=W0..^EWE..^WI
10 ovexd φW-1J+1V
11 7 10 eqeltrid φEV
12 5 eldifad φID
13 12 s1cld φ⟨“I”⟩WordD
14 splval WdomMEVEV⟨“I”⟩WordDWspliceEE⟨“I”⟩=WprefixE++⟨“I”⟩++WsubstrEW
15 4 11 11 13 14 syl13anc φWspliceEE⟨“I”⟩=WprefixE++⟨“I”⟩++WsubstrEW
16 8 15 eqtrid φU=WprefixE++⟨“I”⟩++WsubstrEW
17 16 rneqd φranU=ranWprefixE++⟨“I”⟩++WsubstrEW
18 ssrab2 wWordD|w:domw1-1DWordD
19 eqid BaseS=BaseS
20 1 2 19 tocycf DVM:wWordD|w:domw1-1DBaseS
21 3 20 syl φM:wWordD|w:domw1-1DBaseS
22 21 fdmd φdomM=wWordD|w:domw1-1D
23 4 22 eleqtrd φWwWordD|w:domw1-1D
24 18 23 sselid φWWordD
25 pfxcl WWordDWprefixEWordD
26 24 25 syl φWprefixEWordD
27 ccatcl WprefixEWordD⟨“I”⟩WordDWprefixE++⟨“I”⟩WordD
28 26 13 27 syl2anc φWprefixE++⟨“I”⟩WordD
29 swrdcl WWordDWsubstrEWWordD
30 24 29 syl φWsubstrEWWordD
31 ccatrn WprefixE++⟨“I”⟩WordDWsubstrEWWordDranWprefixE++⟨“I”⟩++WsubstrEW=ranWprefixE++⟨“I”⟩ranWsubstrEW
32 28 30 31 syl2anc φranWprefixE++⟨“I”⟩++WsubstrEW=ranWprefixE++⟨“I”⟩ranWsubstrEW
33 ccatrn WprefixEWordD⟨“I”⟩WordDranWprefixE++⟨“I”⟩=ranWprefixEran⟨“I”⟩
34 26 13 33 syl2anc φranWprefixE++⟨“I”⟩=ranWprefixEran⟨“I”⟩
35 id w=Ww=W
36 dmeq w=Wdomw=domW
37 eqidd w=WD=D
38 35 36 37 f1eq123d w=Ww:domw1-1DW:domW1-1D
39 38 elrab WwWordD|w:domw1-1DWWordDW:domW1-1D
40 23 39 sylib φWWordDW:domW1-1D
41 40 simprd φW:domW1-1D
42 f1cnv W:domW1-1DW-1:ranW1-1 ontodomW
43 f1of W-1:ranW1-1 ontodomWW-1:ranWdomW
44 41 42 43 3syl φW-1:ranWdomW
45 44 6 ffvelcdmd φW-1JdomW
46 wrddm WWordDdomW=0..^W
47 24 46 syl φdomW=0..^W
48 45 47 eleqtrd φW-1J0..^W
49 fzofzp1 W-1J0..^WW-1J+10W
50 48 49 syl φW-1J+10W
51 7 50 eqeltrid φE0W
52 pfxrn3 WWordDE0WranWprefixE=W0..^E
53 24 51 52 syl2anc φranWprefixE=W0..^E
54 s1rn IDran⟨“I”⟩=I
55 12 54 syl φran⟨“I”⟩=I
56 53 55 uneq12d φranWprefixEran⟨“I”⟩=W0..^EI
57 34 56 eqtrd φranWprefixE++⟨“I”⟩=W0..^EI
58 lencl WWordDW0
59 nn0fz0 W0W0W
60 59 biimpi W0W0W
61 24 58 60 3syl φW0W
62 swrdrn3 WWordDE0WW0WranWsubstrEW=WE..^W
63 24 51 61 62 syl3anc φranWsubstrEW=WE..^W
64 57 63 uneq12d φranWprefixE++⟨“I”⟩ranWsubstrEW=W0..^EIWE..^W
65 17 32 64 3eqtrd φranU=W0..^EIWE..^W
66 fzosplit E0W0..^W=0..^EE..^W
67 51 66 syl φ0..^W=0..^EE..^W
68 67 imaeq2d φW0..^W=W0..^EE..^W
69 wrdf WWordDW:0..^WD
70 24 69 syl φW:0..^WD
71 70 ffnd φWFn0..^W
72 fnima WFn0..^WW0..^W=ranW
73 71 72 syl φW0..^W=ranW
74 elfzuz3 E0WWE
75 fzoss2 WE0..^E0..^W
76 51 74 75 3syl φ0..^E0..^W
77 fz0ssnn0 0W0
78 77 51 sselid φE0
79 nn0uz 0=0
80 78 79 eleqtrdi φE0
81 fzoss1 E0E..^W0..^W
82 80 81 syl φE..^W0..^W
83 unima WFn0..^W0..^E0..^WE..^W0..^WW0..^EE..^W=W0..^EWE..^W
84 71 76 82 83 syl3anc φW0..^EE..^W=W0..^EWE..^W
85 68 73 84 3eqtr3d φranW=W0..^EWE..^W
86 85 uneq1d φranWI=W0..^EWE..^WI
87 9 65 86 3eqtr4a φranU=ranWI