Metamath Proof Explorer


Theorem dalawlem11

Description: Lemma for dalaw . First part of dalawlem13 . (Contributed by NM, 17-Sep-2012)

Ref Expression
Hypotheses dalawlem.l ˙=K
dalawlem.j ˙=joinK
dalawlem.m ˙=meetK
dalawlem.a A=AtomsK
Assertion dalawlem11 KHLP˙Q˙RP˙S˙Q˙T˙R˙UPAQARASATAUAP˙Q˙S˙T˙Q˙R˙T˙U˙R˙P˙U˙S

Proof

Step Hyp Ref Expression
1 dalawlem.l ˙=K
2 dalawlem.j ˙=joinK
3 dalawlem.m ˙=meetK
4 dalawlem.a A=AtomsK
5 eqid BaseK=BaseK
6 simp11 KHLP˙Q˙RP˙S˙Q˙T˙R˙UPAQARASATAUAKHL
7 6 hllatd KHLP˙Q˙RP˙S˙Q˙T˙R˙UPAQARASATAUAKLat
8 simp21 KHLP˙Q˙RP˙S˙Q˙T˙R˙UPAQARASATAUAPA
9 simp22 KHLP˙Q˙RP˙S˙Q˙T˙R˙UPAQARASATAUAQA
10 5 2 4 hlatjcl KHLPAQAP˙QBaseK
11 6 8 9 10 syl3anc KHLP˙Q˙RP˙S˙Q˙T˙R˙UPAQARASATAUAP˙QBaseK
12 simp31 KHLP˙Q˙RP˙S˙Q˙T˙R˙UPAQARASATAUASA
13 simp32 KHLP˙Q˙RP˙S˙Q˙T˙R˙UPAQARASATAUATA
14 5 2 4 hlatjcl KHLSATAS˙TBaseK
15 6 12 13 14 syl3anc KHLP˙Q˙RP˙S˙Q˙T˙R˙UPAQARASATAUAS˙TBaseK
16 5 3 latmcl KLatP˙QBaseKS˙TBaseKP˙Q˙S˙TBaseK
17 7 11 15 16 syl3anc KHLP˙Q˙RP˙S˙Q˙T˙R˙UPAQARASATAUAP˙Q˙S˙TBaseK
18 simp23 KHLP˙Q˙RP˙S˙Q˙T˙R˙UPAQARASATAUARA
19 5 2 4 hlatjcl KHLQARAQ˙RBaseK
20 6 9 18 19 syl3anc KHLP˙Q˙RP˙S˙Q˙T˙R˙UPAQARASATAUAQ˙RBaseK
21 5 1 3 latmle1 KLatP˙QBaseKS˙TBaseKP˙Q˙S˙T˙P˙Q
22 7 11 15 21 syl3anc KHLP˙Q˙RP˙S˙Q˙T˙R˙UPAQARASATAUAP˙Q˙S˙T˙P˙Q
23 simp12 KHLP˙Q˙RP˙S˙Q˙T˙R˙UPAQARASATAUAP˙Q˙R
24 5 4 atbase QAQBaseK
25 9 24 syl KHLP˙Q˙RP˙S˙Q˙T˙R˙UPAQARASATAUAQBaseK
26 5 4 atbase RARBaseK
27 18 26 syl KHLP˙Q˙RP˙S˙Q˙T˙R˙UPAQARASATAUARBaseK
28 5 1 2 latlej1 KLatQBaseKRBaseKQ˙Q˙R
29 7 25 27 28 syl3anc KHLP˙Q˙RP˙S˙Q˙T˙R˙UPAQARASATAUAQ˙Q˙R
30 5 4 atbase PAPBaseK
31 8 30 syl KHLP˙Q˙RP˙S˙Q˙T˙R˙UPAQARASATAUAPBaseK
32 5 1 2 latjle12 KLatPBaseKQBaseKQ˙RBaseKP˙Q˙RQ˙Q˙RP˙Q˙Q˙R
33 7 31 25 20 32 syl13anc KHLP˙Q˙RP˙S˙Q˙T˙R˙UPAQARASATAUAP˙Q˙RQ˙Q˙RP˙Q˙Q˙R
34 23 29 33 mpbi2and KHLP˙Q˙RP˙S˙Q˙T˙R˙UPAQARASATAUAP˙Q˙Q˙R
35 5 1 7 17 11 20 22 34 lattrd KHLP˙Q˙RP˙S˙Q˙T˙R˙UPAQARASATAUAP˙Q˙S˙T˙Q˙R
36 5 4 atbase TATBaseK
37 13 36 syl KHLP˙Q˙RP˙S˙Q˙T˙R˙UPAQARASATAUATBaseK
38 5 2 latjcl KLatP˙QBaseKTBaseKP˙Q˙TBaseK
39 7 11 37 38 syl3anc KHLP˙Q˙RP˙S˙Q˙T˙R˙UPAQARASATAUAP˙Q˙TBaseK
40 5 3 latmcl KLatP˙Q˙TBaseKS˙TBaseKP˙Q˙T˙S˙TBaseK
41 7 39 15 40 syl3anc KHLP˙Q˙RP˙S˙Q˙T˙R˙UPAQARASATAUAP˙Q˙T˙S˙TBaseK
42 5 2 4 hlatjcl KHLRAPAR˙PBaseK
43 6 18 8 42 syl3anc KHLP˙Q˙RP˙S˙Q˙T˙R˙UPAQARASATAUAR˙PBaseK
44 simp33 KHLP˙Q˙RP˙S˙Q˙T˙R˙UPAQARASATAUAUA
45 5 2 4 hlatjcl KHLUASAU˙SBaseK
46 6 44 12 45 syl3anc KHLP˙Q˙RP˙S˙Q˙T˙R˙UPAQARASATAUAU˙SBaseK
47 5 3 latmcl KLatR˙PBaseKU˙SBaseKR˙P˙U˙SBaseK
48 7 43 46 47 syl3anc KHLP˙Q˙RP˙S˙Q˙T˙R˙UPAQARASATAUAR˙P˙U˙SBaseK
49 5 4 atbase UAUBaseK
50 44 49 syl KHLP˙Q˙RP˙S˙Q˙T˙R˙UPAQARASATAUAUBaseK
51 5 2 latjcl KLatR˙P˙U˙SBaseKUBaseKR˙P˙U˙S˙UBaseK
52 7 48 50 51 syl3anc KHLP˙Q˙RP˙S˙Q˙T˙R˙UPAQARASATAUAR˙P˙U˙S˙UBaseK
53 5 2 latjcl KLatR˙P˙U˙S˙UBaseKTBaseKR˙P˙U˙S˙U˙TBaseK
54 7 52 37 53 syl3anc KHLP˙Q˙RP˙S˙Q˙T˙R˙UPAQARASATAUAR˙P˙U˙S˙U˙TBaseK
55 5 1 2 latlej1 KLatP˙QBaseKTBaseKP˙Q˙P˙Q˙T
56 7 11 37 55 syl3anc KHLP˙Q˙RP˙S˙Q˙T˙R˙UPAQARASATAUAP˙Q˙P˙Q˙T
57 5 1 3 latmlem1 KLatP˙QBaseKP˙Q˙TBaseKS˙TBaseKP˙Q˙P˙Q˙TP˙Q˙S˙T˙P˙Q˙T˙S˙T
58 7 11 39 15 57 syl13anc KHLP˙Q˙RP˙S˙Q˙T˙R˙UPAQARASATAUAP˙Q˙P˙Q˙TP˙Q˙S˙T˙P˙Q˙T˙S˙T
59 56 58 mpd KHLP˙Q˙RP˙S˙Q˙T˙R˙UPAQARASATAUAP˙Q˙S˙T˙P˙Q˙T˙S˙T
60 5 1 2 latlej2 KLatP˙QBaseKTBaseKT˙P˙Q˙T
61 7 11 37 60 syl3anc KHLP˙Q˙RP˙S˙Q˙T˙R˙UPAQARASATAUAT˙P˙Q˙T
62 5 1 2 3 4 atmod2i2 KHLSAP˙Q˙TBaseKTBaseKT˙P˙Q˙TP˙Q˙T˙S˙T=P˙Q˙T˙S˙T
63 6 12 39 37 61 62 syl131anc KHLP˙Q˙RP˙S˙Q˙T˙R˙UPAQARASATAUAP˙Q˙T˙S˙T=P˙Q˙T˙S˙T
64 5 2 4 hlatjcl KHLQATAQ˙TBaseK
65 6 9 13 64 syl3anc KHLP˙Q˙RP˙S˙Q˙T˙R˙UPAQARASATAUAQ˙TBaseK
66 5 2 4 hlatjcl KHLPASAP˙SBaseK
67 6 8 12 66 syl3anc KHLP˙Q˙RP˙S˙Q˙T˙R˙UPAQARASATAUAP˙SBaseK
68 5 3 latmcom KLatQ˙TBaseKP˙SBaseKQ˙T˙P˙S=P˙S˙Q˙T
69 7 65 67 68 syl3anc KHLP˙Q˙RP˙S˙Q˙T˙R˙UPAQARASATAUAQ˙T˙P˙S=P˙S˙Q˙T
70 simp13 KHLP˙Q˙RP˙S˙Q˙T˙R˙UPAQARASATAUAP˙S˙Q˙T˙R˙U
71 69 70 eqbrtrd KHLP˙Q˙RP˙S˙Q˙T˙R˙UPAQARASATAUAQ˙T˙P˙S˙R˙U
72 5 3 latmcl KLatQ˙TBaseKP˙SBaseKQ˙T˙P˙SBaseK
73 7 65 67 72 syl3anc KHLP˙Q˙RP˙S˙Q˙T˙R˙UPAQARASATAUAQ˙T˙P˙SBaseK
74 5 2 4 hlatjcl KHLRAUAR˙UBaseK
75 6 18 44 74 syl3anc KHLP˙Q˙RP˙S˙Q˙T˙R˙UPAQARASATAUAR˙UBaseK
76 5 1 2 latjlej2 KLatQ˙T˙P˙SBaseKR˙UBaseKPBaseKQ˙T˙P˙S˙R˙UP˙Q˙T˙P˙S˙P˙R˙U
77 7 73 75 31 76 syl13anc KHLP˙Q˙RP˙S˙Q˙T˙R˙UPAQARASATAUAQ˙T˙P˙S˙R˙UP˙Q˙T˙P˙S˙P˙R˙U
78 71 77 mpd KHLP˙Q˙RP˙S˙Q˙T˙R˙UPAQARASATAUAP˙Q˙T˙P˙S˙P˙R˙U
79 5 4 atbase SASBaseK
80 12 79 syl KHLP˙Q˙RP˙S˙Q˙T˙R˙UPAQARASATAUASBaseK
81 5 1 2 latlej1 KLatPBaseKSBaseKP˙P˙S
82 7 31 80 81 syl3anc KHLP˙Q˙RP˙S˙Q˙T˙R˙UPAQARASATAUAP˙P˙S
83 5 1 2 3 4 atmod1i1 KHLPAQ˙TBaseKP˙SBaseKP˙P˙SP˙Q˙T˙P˙S=P˙Q˙T˙P˙S
84 6 8 65 67 82 83 syl131anc KHLP˙Q˙RP˙S˙Q˙T˙R˙UPAQARASATAUAP˙Q˙T˙P˙S=P˙Q˙T˙P˙S
85 2 4 hlatjass KHLPARAUAP˙R˙U=P˙R˙U
86 6 8 18 44 85 syl13anc KHLP˙Q˙RP˙S˙Q˙T˙R˙UPAQARASATAUAP˙R˙U=P˙R˙U
87 2 4 hlatjcom KHLPARAP˙R=R˙P
88 6 8 18 87 syl3anc KHLP˙Q˙RP˙S˙Q˙T˙R˙UPAQARASATAUAP˙R=R˙P
89 88 oveq1d KHLP˙Q˙RP˙S˙Q˙T˙R˙UPAQARASATAUAP˙R˙U=R˙P˙U
90 86 89 eqtr3d KHLP˙Q˙RP˙S˙Q˙T˙R˙UPAQARASATAUAP˙R˙U=R˙P˙U
91 78 84 90 3brtr3d KHLP˙Q˙RP˙S˙Q˙T˙R˙UPAQARASATAUAP˙Q˙T˙P˙S˙R˙P˙U
92 5 1 2 latlej2 KLatUBaseKSBaseKS˙U˙S
93 7 50 80 92 syl3anc KHLP˙Q˙RP˙S˙Q˙T˙R˙UPAQARASATAUAS˙U˙S
94 5 2 latjcl KLatPBaseKQ˙TBaseKP˙Q˙TBaseK
95 7 31 65 94 syl3anc KHLP˙Q˙RP˙S˙Q˙T˙R˙UPAQARASATAUAP˙Q˙TBaseK
96 5 3 latmcl KLatP˙Q˙TBaseKP˙SBaseKP˙Q˙T˙P˙SBaseK
97 7 95 67 96 syl3anc KHLP˙Q˙RP˙S˙Q˙T˙R˙UPAQARASATAUAP˙Q˙T˙P˙SBaseK
98 5 2 latjcl KLatR˙PBaseKUBaseKR˙P˙UBaseK
99 7 43 50 98 syl3anc KHLP˙Q˙RP˙S˙Q˙T˙R˙UPAQARASATAUAR˙P˙UBaseK
100 5 1 3 latmlem12 KLatP˙Q˙T˙P˙SBaseKR˙P˙UBaseKSBaseKU˙SBaseKP˙Q˙T˙P˙S˙R˙P˙US˙U˙SP˙Q˙T˙P˙S˙S˙R˙P˙U˙U˙S
101 7 97 99 80 46 100 syl122anc KHLP˙Q˙RP˙S˙Q˙T˙R˙UPAQARASATAUAP˙Q˙T˙P˙S˙R˙P˙US˙U˙SP˙Q˙T˙P˙S˙S˙R˙P˙U˙U˙S
102 91 93 101 mp2and KHLP˙Q˙RP˙S˙Q˙T˙R˙UPAQARASATAUAP˙Q˙T˙P˙S˙S˙R˙P˙U˙U˙S
103 hlol KHLKOL
104 6 103 syl KHLP˙Q˙RP˙S˙Q˙T˙R˙UPAQARASATAUAKOL
105 5 3 latmassOLD KOLP˙Q˙TBaseKP˙SBaseKSBaseKP˙Q˙T˙P˙S˙S=P˙Q˙T˙P˙S˙S
106 104 95 67 80 105 syl13anc KHLP˙Q˙RP˙S˙Q˙T˙R˙UPAQARASATAUAP˙Q˙T˙P˙S˙S=P˙Q˙T˙P˙S˙S
107 2 4 hlatjass KHLPAQATAP˙Q˙T=P˙Q˙T
108 6 8 9 13 107 syl13anc KHLP˙Q˙RP˙S˙Q˙T˙R˙UPAQARASATAUAP˙Q˙T=P˙Q˙T
109 108 eqcomd KHLP˙Q˙RP˙S˙Q˙T˙R˙UPAQARASATAUAP˙Q˙T=P˙Q˙T
110 5 1 2 latlej2 KLatPBaseKSBaseKS˙P˙S
111 7 31 80 110 syl3anc KHLP˙Q˙RP˙S˙Q˙T˙R˙UPAQARASATAUAS˙P˙S
112 5 1 3 latleeqm2 KLatSBaseKP˙SBaseKS˙P˙SP˙S˙S=S
113 7 80 67 112 syl3anc KHLP˙Q˙RP˙S˙Q˙T˙R˙UPAQARASATAUAS˙P˙SP˙S˙S=S
114 111 113 mpbid KHLP˙Q˙RP˙S˙Q˙T˙R˙UPAQARASATAUAP˙S˙S=S
115 109 114 oveq12d KHLP˙Q˙RP˙S˙Q˙T˙R˙UPAQARASATAUAP˙Q˙T˙P˙S˙S=P˙Q˙T˙S
116 106 115 eqtr2d KHLP˙Q˙RP˙S˙Q˙T˙R˙UPAQARASATAUAP˙Q˙T˙S=P˙Q˙T˙P˙S˙S
117 5 1 2 latlej1 KLatUBaseKSBaseKU˙U˙S
118 7 50 80 117 syl3anc KHLP˙Q˙RP˙S˙Q˙T˙R˙UPAQARASATAUAU˙U˙S
119 5 1 2 3 4 atmod4i1 KHLUAR˙PBaseKU˙SBaseKU˙U˙SR˙P˙U˙S˙U=R˙P˙U˙U˙S
120 6 44 43 46 118 119 syl131anc KHLP˙Q˙RP˙S˙Q˙T˙R˙UPAQARASATAUAR˙P˙U˙S˙U=R˙P˙U˙U˙S
121 102 116 120 3brtr4d KHLP˙Q˙RP˙S˙Q˙T˙R˙UPAQARASATAUAP˙Q˙T˙S˙R˙P˙U˙S˙U
122 5 3 latmcl KLatP˙Q˙TBaseKSBaseKP˙Q˙T˙SBaseK
123 7 39 80 122 syl3anc KHLP˙Q˙RP˙S˙Q˙T˙R˙UPAQARASATAUAP˙Q˙T˙SBaseK
124 5 1 2 latjlej1 KLatP˙Q˙T˙SBaseKR˙P˙U˙S˙UBaseKTBaseKP˙Q˙T˙S˙R˙P˙U˙S˙UP˙Q˙T˙S˙T˙R˙P˙U˙S˙U˙T
125 7 123 52 37 124 syl13anc KHLP˙Q˙RP˙S˙Q˙T˙R˙UPAQARASATAUAP˙Q˙T˙S˙R˙P˙U˙S˙UP˙Q˙T˙S˙T˙R˙P˙U˙S˙U˙T
126 121 125 mpd KHLP˙Q˙RP˙S˙Q˙T˙R˙UPAQARASATAUAP˙Q˙T˙S˙T˙R˙P˙U˙S˙U˙T
127 63 126 eqbrtrrd KHLP˙Q˙RP˙S˙Q˙T˙R˙UPAQARASATAUAP˙Q˙T˙S˙T˙R˙P˙U˙S˙U˙T
128 5 1 7 17 41 54 59 127 lattrd KHLP˙Q˙RP˙S˙Q˙T˙R˙UPAQARASATAUAP˙Q˙S˙T˙R˙P˙U˙S˙U˙T
129 5 2 latj31 KLatR˙P˙U˙SBaseKUBaseKTBaseKR˙P˙U˙S˙U˙T=T˙U˙R˙P˙U˙S
130 7 48 50 37 129 syl13anc KHLP˙Q˙RP˙S˙Q˙T˙R˙UPAQARASATAUAR˙P˙U˙S˙U˙T=T˙U˙R˙P˙U˙S
131 128 130 breqtrd KHLP˙Q˙RP˙S˙Q˙T˙R˙UPAQARASATAUAP˙Q˙S˙T˙T˙U˙R˙P˙U˙S
132 5 2 4 hlatjcl KHLTAUAT˙UBaseK
133 6 13 44 132 syl3anc KHLP˙Q˙RP˙S˙Q˙T˙R˙UPAQARASATAUAT˙UBaseK
134 5 2 latjcl KLatT˙UBaseKR˙P˙U˙SBaseKT˙U˙R˙P˙U˙SBaseK
135 7 133 48 134 syl3anc KHLP˙Q˙RP˙S˙Q˙T˙R˙UPAQARASATAUAT˙U˙R˙P˙U˙SBaseK
136 5 1 3 latlem12 KLatP˙Q˙S˙TBaseKQ˙RBaseKT˙U˙R˙P˙U˙SBaseKP˙Q˙S˙T˙Q˙RP˙Q˙S˙T˙T˙U˙R˙P˙U˙SP˙Q˙S˙T˙Q˙R˙T˙U˙R˙P˙U˙S
137 7 17 20 135 136 syl13anc KHLP˙Q˙RP˙S˙Q˙T˙R˙UPAQARASATAUAP˙Q˙S˙T˙Q˙RP˙Q˙S˙T˙T˙U˙R˙P˙U˙SP˙Q˙S˙T˙Q˙R˙T˙U˙R˙P˙U˙S
138 35 131 137 mpbi2and KHLP˙Q˙RP˙S˙Q˙T˙R˙UPAQARASATAUAP˙Q˙S˙T˙Q˙R˙T˙U˙R˙P˙U˙S
139 5 1 3 latmle1 KLatR˙PBaseKU˙SBaseKR˙P˙U˙S˙R˙P
140 7 43 46 139 syl3anc KHLP˙Q˙RP˙S˙Q˙T˙R˙UPAQARASATAUAR˙P˙U˙S˙R˙P
141 5 1 2 latlej2 KLatQBaseKRBaseKR˙Q˙R
142 7 25 27 141 syl3anc KHLP˙Q˙RP˙S˙Q˙T˙R˙UPAQARASATAUAR˙Q˙R
143 5 1 2 latjle12 KLatRBaseKPBaseKQ˙RBaseKR˙Q˙RP˙Q˙RR˙P˙Q˙R
144 7 27 31 20 143 syl13anc KHLP˙Q˙RP˙S˙Q˙T˙R˙UPAQARASATAUAR˙Q˙RP˙Q˙RR˙P˙Q˙R
145 142 23 144 mpbi2and KHLP˙Q˙RP˙S˙Q˙T˙R˙UPAQARASATAUAR˙P˙Q˙R
146 5 1 7 48 43 20 140 145 lattrd KHLP˙Q˙RP˙S˙Q˙T˙R˙UPAQARASATAUAR˙P˙U˙S˙Q˙R
147 5 1 2 3 4 llnmod2i2 KHLQ˙RBaseKR˙P˙U˙SBaseKTAUAR˙P˙U˙S˙Q˙RQ˙R˙T˙U˙R˙P˙U˙S=Q˙R˙T˙U˙R˙P˙U˙S
148 6 20 48 13 44 146 147 syl321anc KHLP˙Q˙RP˙S˙Q˙T˙R˙UPAQARASATAUAQ˙R˙T˙U˙R˙P˙U˙S=Q˙R˙T˙U˙R˙P˙U˙S
149 138 148 breqtrrd KHLP˙Q˙RP˙S˙Q˙T˙R˙UPAQARASATAUAP˙Q˙S˙T˙Q˙R˙T˙U˙R˙P˙U˙S