Metamath Proof Explorer


Theorem dalem54

Description: Lemma for dath . Line G H intersects the auxiliary axis of perspectivity B . (Contributed by NM, 8-Aug-2012)

Ref Expression
Hypotheses dalem.ph φKHLCBaseKPAQARASATAUAYOZO¬C˙P˙Q¬C˙Q˙R¬C˙R˙P¬C˙S˙T¬C˙T˙U¬C˙U˙SC˙P˙SC˙Q˙TC˙R˙U
dalem.l ˙=K
dalem.j ˙=joinK
dalem.a A=AtomsK
dalem.ps ψcAdA¬c˙Ydc¬d˙YC˙c˙d
dalem54.m ˙=meetK
dalem54.o O=LPlanesK
dalem54.y Y=P˙Q˙R
dalem54.z Z=S˙T˙U
dalem54.g G=c˙P˙d˙S
dalem54.h H=c˙Q˙d˙T
dalem54.i I=c˙R˙d˙U
dalem54.b1 B=G˙H˙I˙Y
Assertion dalem54 φY=ZψG˙H˙BA

Proof

Step Hyp Ref Expression
1 dalem.ph φKHLCBaseKPAQARASATAUAYOZO¬C˙P˙Q¬C˙Q˙R¬C˙R˙P¬C˙S˙T¬C˙T˙U¬C˙U˙SC˙P˙SC˙Q˙TC˙R˙U
2 dalem.l ˙=K
3 dalem.j ˙=joinK
4 dalem.a A=AtomsK
5 dalem.ps ψcAdA¬c˙Ydc¬d˙YC˙c˙d
6 dalem54.m ˙=meetK
7 dalem54.o O=LPlanesK
8 dalem54.y Y=P˙Q˙R
9 dalem54.z Z=S˙T˙U
10 dalem54.g G=c˙P˙d˙S
11 dalem54.h H=c˙Q˙d˙T
12 dalem54.i I=c˙R˙d˙U
13 dalem54.b1 B=G˙H˙I˙Y
14 1 dalemkehl φKHL
15 14 3ad2ant1 φY=ZψKHL
16 1 2 3 4 5 6 7 8 9 10 dalem23 φY=ZψGA
17 1 2 3 4 5 6 7 8 9 11 dalem29 φY=ZψHA
18 1 2 3 4 5 6 7 8 9 10 11 12 dalem41 φY=ZψGH
19 eqid LLinesK=LLinesK
20 3 4 19 llni2 KHLGAHAGHG˙HLLinesK
21 15 16 17 18 20 syl31anc φY=ZψG˙HLLinesK
22 1 2 3 4 5 6 19 7 8 9 10 11 12 13 dalem53 φY=ZψBLLinesK
23 1 dalemkelat φKLat
24 23 3ad2ant1 φY=ZψKLat
25 eqid BaseK=BaseK
26 25 19 llnbase G˙HLLinesKG˙HBaseK
27 21 26 syl φY=ZψG˙HBaseK
28 1 2 3 4 5 6 7 8 9 12 dalem34 φY=ZψIA
29 25 4 atbase IAIBaseK
30 28 29 syl φY=ZψIBaseK
31 25 3 latjcl KLatG˙HBaseKIBaseKG˙H˙IBaseK
32 24 27 30 31 syl3anc φY=ZψG˙H˙IBaseK
33 1 7 dalemyeb φYBaseK
34 33 3ad2ant1 φY=ZψYBaseK
35 25 2 6 latmle2 KLatG˙H˙IBaseKYBaseKG˙H˙I˙Y˙Y
36 24 32 34 35 syl3anc φY=ZψG˙H˙I˙Y˙Y
37 13 36 eqbrtrid φY=ZψB˙Y
38 1 2 3 4 5 6 7 8 9 10 dalem24 φY=Zψ¬G˙Y
39 25 4 atbase GAGBaseK
40 16 39 syl φY=ZψGBaseK
41 25 4 atbase HAHBaseK
42 17 41 syl φY=ZψHBaseK
43 25 2 3 latjle12 KLatGBaseKHBaseKYBaseKG˙YH˙YG˙H˙Y
44 24 40 42 34 43 syl13anc φY=ZψG˙YH˙YG˙H˙Y
45 simpl G˙YH˙YG˙Y
46 44 45 syl6bir φY=ZψG˙H˙YG˙Y
47 38 46 mtod φY=Zψ¬G˙H˙Y
48 nbrne2 B˙Y¬G˙H˙YBG˙H
49 37 47 48 syl2anc φY=ZψBG˙H
50 49 necomd φY=ZψG˙HB
51 hlatl KHLKAtLat
52 15 51 syl φY=ZψKAtLat
53 25 19 llnbase BLLinesKBBaseK
54 22 53 syl φY=ZψBBaseK
55 25 6 latmcl KLatG˙HBaseKBBaseKG˙H˙BBaseK
56 24 27 54 55 syl3anc φY=ZψG˙H˙BBaseK
57 1 2 3 4 5 6 7 8 9 10 11 12 dalem52 φY=ZψG˙H˙P˙QA
58 1 3 4 dalempjqeb φP˙QBaseK
59 58 3ad2ant1 φY=ZψP˙QBaseK
60 25 2 6 latmle1 KLatG˙HBaseKP˙QBaseKG˙H˙P˙Q˙G˙H
61 24 27 59 60 syl3anc φY=ZψG˙H˙P˙Q˙G˙H
62 1 2 3 4 5 6 7 8 9 10 11 12 dalem51 φY=ZψKHLcAGAHAIAPAQARAG˙H˙IOYO¬c˙G˙H¬c˙H˙I¬c˙I˙G¬c˙P˙Q¬c˙Q˙R¬c˙R˙Pc˙G˙Pc˙H˙Qc˙I˙RG˙H˙IY
63 62 simpld φY=ZψKHLcAGAHAIAPAQARAG˙H˙IOYO¬c˙G˙H¬c˙H˙I¬c˙I˙G¬c˙P˙Q¬c˙Q˙R¬c˙R˙Pc˙G˙Pc˙H˙Qc˙I˙R
64 25 4 atbase cAcBaseK
65 64 anim2i KHLcAKHLcBaseK
66 65 3anim1i KHLcAGAHAIAPAQARAKHLcBaseKGAHAIAPAQARA
67 biid KHLcBaseKGAHAIAPAQARAG˙H˙IOYO¬c˙G˙H¬c˙H˙I¬c˙I˙G¬c˙P˙Q¬c˙Q˙R¬c˙R˙Pc˙G˙Pc˙H˙Qc˙I˙RKHLcBaseKGAHAIAPAQARAG˙H˙IOYO¬c˙G˙H¬c˙H˙I¬c˙I˙G¬c˙P˙Q¬c˙Q˙R¬c˙R˙Pc˙G˙Pc˙H˙Qc˙I˙R
68 eqid G˙H˙I=G˙H˙I
69 eqid G˙H˙P˙Q=G˙H˙P˙Q
70 67 2 3 4 6 7 68 8 13 69 dalem10 KHLcBaseKGAHAIAPAQARAG˙H˙IOYO¬c˙G˙H¬c˙H˙I¬c˙I˙G¬c˙P˙Q¬c˙Q˙R¬c˙R˙Pc˙G˙Pc˙H˙Qc˙I˙RG˙H˙P˙Q˙B
71 66 70 syl3an1 KHLcAGAHAIAPAQARAG˙H˙IOYO¬c˙G˙H¬c˙H˙I¬c˙I˙G¬c˙P˙Q¬c˙Q˙R¬c˙R˙Pc˙G˙Pc˙H˙Qc˙I˙RG˙H˙P˙Q˙B
72 63 71 syl φY=ZψG˙H˙P˙Q˙B
73 25 6 latmcl KLatG˙HBaseKP˙QBaseKG˙H˙P˙QBaseK
74 24 27 59 73 syl3anc φY=ZψG˙H˙P˙QBaseK
75 25 2 6 latlem12 KLatG˙H˙P˙QBaseKG˙HBaseKBBaseKG˙H˙P˙Q˙G˙HG˙H˙P˙Q˙BG˙H˙P˙Q˙G˙H˙B
76 24 74 27 54 75 syl13anc φY=ZψG˙H˙P˙Q˙G˙HG˙H˙P˙Q˙BG˙H˙P˙Q˙G˙H˙B
77 61 72 76 mpbi2and φY=ZψG˙H˙P˙Q˙G˙H˙B
78 eqid 0.K=0.K
79 25 2 78 4 atlen0 KAtLatG˙H˙BBaseKG˙H˙P˙QAG˙H˙P˙Q˙G˙H˙BG˙H˙B0.K
80 52 56 57 77 79 syl31anc φY=ZψG˙H˙B0.K
81 6 78 4 19 2llnmat KHLG˙HLLinesKBLLinesKG˙HBG˙H˙B0.KG˙H˙BA
82 15 21 22 50 80 81 syl32anc φY=ZψG˙H˙BA