Metamath Proof Explorer


Theorem dchr2sum

Description: An orthogonality relation for Dirichlet characters: the sum of X ( a ) x. * Y ( a ) over all a is nonzero only when X = Y . Part of Theorem 6.5.2 of Shapiro p. 232. (Contributed by Mario Carneiro, 28-Apr-2016)

Ref Expression
Hypotheses dchr2sum.g G=DChrN
dchr2sum.z Z=/N
dchr2sum.d D=BaseG
dchr2sum.b B=BaseZ
dchr2sum.x φXD
dchr2sum.y φYD
Assertion dchr2sum φaBXaYa=ifX=YϕN0

Proof

Step Hyp Ref Expression
1 dchr2sum.g G=DChrN
2 dchr2sum.z Z=/N
3 dchr2sum.d D=BaseG
4 dchr2sum.b B=BaseZ
5 dchr2sum.x φXD
6 dchr2sum.y φYD
7 eqid 0G=0G
8 1 3 dchrrcl XDN
9 5 8 syl φN
10 1 dchrabl NGAbel
11 ablgrp GAbelGGrp
12 9 10 11 3syl φGGrp
13 eqid -G=-G
14 3 13 grpsubcl GGrpXDYDX-GYD
15 12 5 6 14 syl3anc φX-GYD
16 1 2 3 7 15 4 dchrsum φaBX-GYa=ifX-GY=0GϕN0
17 5 adantr φaBXD
18 6 adantr φaBYD
19 eqid +G=+G
20 eqid invgG=invgG
21 3 19 20 13 grpsubval XDYDX-GY=X+GinvgGY
22 17 18 21 syl2anc φaBX-GY=X+GinvgGY
23 9 adantr φaBN
24 23 10 11 3syl φaBGGrp
25 3 20 grpinvcl GGrpYDinvgGYD
26 24 18 25 syl2anc φaBinvgGYD
27 1 2 3 19 17 26 dchrmul φaBX+GinvgGY=X×finvgGY
28 22 27 eqtrd φaBX-GY=X×finvgGY
29 28 fveq1d φaBX-GYa=X×finvgGYa
30 1 2 3 4 17 dchrf φaBX:B
31 30 ffnd φaBXFnB
32 1 2 3 4 26 dchrf φaBinvgGY:B
33 32 ffnd φaBinvgGYFnB
34 4 fvexi BV
35 34 a1i φaBBV
36 simpr φaBaB
37 fnfvof XFnBinvgGYFnBBVaBX×finvgGYa=XainvgGYa
38 31 33 35 36 37 syl22anc φaBX×finvgGYa=XainvgGYa
39 1 3 18 20 dchrinv φaBinvgGY=*Y
40 39 fveq1d φaBinvgGYa=*Ya
41 1 2 3 4 18 dchrf φaBY:B
42 fvco3 Y:BaB*Ya=Ya
43 41 36 42 syl2anc φaB*Ya=Ya
44 40 43 eqtrd φaBinvgGYa=Ya
45 44 oveq2d φaBXainvgGYa=XaYa
46 29 38 45 3eqtrd φaBX-GYa=XaYa
47 46 sumeq2dv φaBX-GYa=aBXaYa
48 3 7 13 grpsubeq0 GGrpXDYDX-GY=0GX=Y
49 12 5 6 48 syl3anc φX-GY=0GX=Y
50 49 ifbid φifX-GY=0GϕN0=ifX=YϕN0
51 16 47 50 3eqtr3d φaBXaYa=ifX=YϕN0