Description: An orthogonality relation for Dirichlet characters: the sum of X ( a ) x. * Y ( a ) over all a is nonzero only when X = Y . Part of Theorem 6.5.2 of Shapiro p. 232. (Contributed by Mario Carneiro, 28-Apr-2016)
Ref | Expression | ||
---|---|---|---|
Hypotheses | dchr2sum.g | |
|
dchr2sum.z | |
||
dchr2sum.d | |
||
dchr2sum.b | |
||
dchr2sum.x | |
||
dchr2sum.y | |
||
Assertion | dchr2sum | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dchr2sum.g | |
|
2 | dchr2sum.z | |
|
3 | dchr2sum.d | |
|
4 | dchr2sum.b | |
|
5 | dchr2sum.x | |
|
6 | dchr2sum.y | |
|
7 | eqid | |
|
8 | 1 3 | dchrrcl | |
9 | 5 8 | syl | |
10 | 1 | dchrabl | |
11 | ablgrp | |
|
12 | 9 10 11 | 3syl | |
13 | eqid | |
|
14 | 3 13 | grpsubcl | |
15 | 12 5 6 14 | syl3anc | |
16 | 1 2 3 7 15 4 | dchrsum | |
17 | 5 | adantr | |
18 | 6 | adantr | |
19 | eqid | |
|
20 | eqid | |
|
21 | 3 19 20 13 | grpsubval | |
22 | 17 18 21 | syl2anc | |
23 | 9 | adantr | |
24 | 23 10 11 | 3syl | |
25 | 3 20 | grpinvcl | |
26 | 24 18 25 | syl2anc | |
27 | 1 2 3 19 17 26 | dchrmul | |
28 | 22 27 | eqtrd | |
29 | 28 | fveq1d | |
30 | 1 2 3 4 17 | dchrf | |
31 | 30 | ffnd | |
32 | 1 2 3 4 26 | dchrf | |
33 | 32 | ffnd | |
34 | 4 | fvexi | |
35 | 34 | a1i | |
36 | simpr | |
|
37 | fnfvof | |
|
38 | 31 33 35 36 37 | syl22anc | |
39 | 1 3 18 20 | dchrinv | |
40 | 39 | fveq1d | |
41 | 1 2 3 4 18 | dchrf | |
42 | fvco3 | |
|
43 | 41 36 42 | syl2anc | |
44 | 40 43 | eqtrd | |
45 | 44 | oveq2d | |
46 | 29 38 45 | 3eqtrd | |
47 | 46 | sumeq2dv | |
48 | 3 7 13 | grpsubeq0 | |
49 | 12 5 6 48 | syl3anc | |
50 | 49 | ifbid | |
51 | 16 47 50 | 3eqtr3d | |