Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - add the Axiom of Infinity
Axiom of Choice equivalents
dfac12lem1
Next ⟩
dfac12lem2
Metamath Proof Explorer
Ascii
Unicode
Theorem
dfac12lem1
Description:
Lemma for
dfac12
.
(Contributed by
Mario Carneiro
, 29-May-2015)
Ref
Expression
Hypotheses
dfac12.1
⊢
φ
→
A
∈
On
dfac12.3
⊢
φ
→
F
:
𝒫
har
R
1
A
⟶
1-1
On
dfac12.4
⊢
G
=
recs
x
∈
V
⟼
y
∈
R
1
dom
x
⟼
if
dom
x
=
⋃
dom
x
suc
⋃
ran
⋃
ran
x
⋅
𝑜
rank
y
+
𝑜
x
suc
rank
y
y
F
OrdIso
E
ran
x
⋃
dom
x
-1
∘
x
⋃
dom
x
y
dfac12.5
⊢
φ
→
C
∈
On
dfac12.h
⊢
H
=
OrdIso
E
ran
G
⋃
C
-1
∘
G
⋃
C
Assertion
dfac12lem1
⊢
φ
→
G
C
=
y
∈
R
1
C
⟼
if
C
=
⋃
C
suc
⋃
ran
⋃
G
C
⋅
𝑜
rank
y
+
𝑜
G
suc
rank
y
y
F
H
y
Proof
Step
Hyp
Ref
Expression
1
dfac12.1
⊢
φ
→
A
∈
On
2
dfac12.3
⊢
φ
→
F
:
𝒫
har
R
1
A
⟶
1-1
On
3
dfac12.4
⊢
G
=
recs
x
∈
V
⟼
y
∈
R
1
dom
x
⟼
if
dom
x
=
⋃
dom
x
suc
⋃
ran
⋃
ran
x
⋅
𝑜
rank
y
+
𝑜
x
suc
rank
y
y
F
OrdIso
E
ran
x
⋃
dom
x
-1
∘
x
⋃
dom
x
y
4
dfac12.5
⊢
φ
→
C
∈
On
5
dfac12.h
⊢
H
=
OrdIso
E
ran
G
⋃
C
-1
∘
G
⋃
C
6
3
tfr2
⊢
C
∈
On
→
G
C
=
x
∈
V
⟼
y
∈
R
1
dom
x
⟼
if
dom
x
=
⋃
dom
x
suc
⋃
ran
⋃
ran
x
⋅
𝑜
rank
y
+
𝑜
x
suc
rank
y
y
F
OrdIso
E
ran
x
⋃
dom
x
-1
∘
x
⋃
dom
x
y
G
↾
C
7
4
6
syl
⊢
φ
→
G
C
=
x
∈
V
⟼
y
∈
R
1
dom
x
⟼
if
dom
x
=
⋃
dom
x
suc
⋃
ran
⋃
ran
x
⋅
𝑜
rank
y
+
𝑜
x
suc
rank
y
y
F
OrdIso
E
ran
x
⋃
dom
x
-1
∘
x
⋃
dom
x
y
G
↾
C
8
3
tfr1
⊢
G
Fn
On
9
fnfun
⊢
G
Fn
On
→
Fun
G
10
8
9
ax-mp
⊢
Fun
G
11
resfunexg
⊢
Fun
G
∧
C
∈
On
→
G
↾
C
∈
V
12
10
4
11
sylancr
⊢
φ
→
G
↾
C
∈
V
13
dmeq
⊢
x
=
G
↾
C
→
dom
x
=
dom
G
↾
C
14
13
fveq2d
⊢
x
=
G
↾
C
→
R
1
dom
x
=
R
1
dom
G
↾
C
15
13
unieqd
⊢
x
=
G
↾
C
→
⋃
dom
x
=
⋃
dom
G
↾
C
16
13
15
eqeq12d
⊢
x
=
G
↾
C
→
dom
x
=
⋃
dom
x
↔
dom
G
↾
C
=
⋃
dom
G
↾
C
17
rneq
⊢
x
=
G
↾
C
→
ran
x
=
ran
G
↾
C
18
df-ima
⊢
G
C
=
ran
G
↾
C
19
17
18
eqtr4di
⊢
x
=
G
↾
C
→
ran
x
=
G
C
20
19
unieqd
⊢
x
=
G
↾
C
→
⋃
ran
x
=
⋃
G
C
21
20
rneqd
⊢
x
=
G
↾
C
→
ran
⋃
ran
x
=
ran
⋃
G
C
22
21
unieqd
⊢
x
=
G
↾
C
→
⋃
ran
⋃
ran
x
=
⋃
ran
⋃
G
C
23
suceq
⊢
⋃
ran
⋃
ran
x
=
⋃
ran
⋃
G
C
→
suc
⋃
ran
⋃
ran
x
=
suc
⋃
ran
⋃
G
C
24
22
23
syl
⊢
x
=
G
↾
C
→
suc
⋃
ran
⋃
ran
x
=
suc
⋃
ran
⋃
G
C
25
24
oveq1d
⊢
x
=
G
↾
C
→
suc
⋃
ran
⋃
ran
x
⋅
𝑜
rank
y
=
suc
⋃
ran
⋃
G
C
⋅
𝑜
rank
y
26
fveq1
⊢
x
=
G
↾
C
→
x
suc
rank
y
=
G
↾
C
suc
rank
y
27
26
fveq1d
⊢
x
=
G
↾
C
→
x
suc
rank
y
y
=
G
↾
C
suc
rank
y
y
28
25
27
oveq12d
⊢
x
=
G
↾
C
→
suc
⋃
ran
⋃
ran
x
⋅
𝑜
rank
y
+
𝑜
x
suc
rank
y
y
=
suc
⋃
ran
⋃
G
C
⋅
𝑜
rank
y
+
𝑜
G
↾
C
suc
rank
y
y
29
id
⊢
x
=
G
↾
C
→
x
=
G
↾
C
30
29
15
fveq12d
⊢
x
=
G
↾
C
→
x
⋃
dom
x
=
G
↾
C
⋃
dom
G
↾
C
31
30
rneqd
⊢
x
=
G
↾
C
→
ran
x
⋃
dom
x
=
ran
G
↾
C
⋃
dom
G
↾
C
32
oieq2
⊢
ran
x
⋃
dom
x
=
ran
G
↾
C
⋃
dom
G
↾
C
→
OrdIso
E
ran
x
⋃
dom
x
=
OrdIso
E
ran
G
↾
C
⋃
dom
G
↾
C
33
31
32
syl
⊢
x
=
G
↾
C
→
OrdIso
E
ran
x
⋃
dom
x
=
OrdIso
E
ran
G
↾
C
⋃
dom
G
↾
C
34
33
cnveqd
⊢
x
=
G
↾
C
→
OrdIso
E
ran
x
⋃
dom
x
-1
=
OrdIso
E
ran
G
↾
C
⋃
dom
G
↾
C
-1
35
34
30
coeq12d
⊢
x
=
G
↾
C
→
OrdIso
E
ran
x
⋃
dom
x
-1
∘
x
⋃
dom
x
=
OrdIso
E
ran
G
↾
C
⋃
dom
G
↾
C
-1
∘
G
↾
C
⋃
dom
G
↾
C
36
35
imaeq1d
⊢
x
=
G
↾
C
→
OrdIso
E
ran
x
⋃
dom
x
-1
∘
x
⋃
dom
x
y
=
OrdIso
E
ran
G
↾
C
⋃
dom
G
↾
C
-1
∘
G
↾
C
⋃
dom
G
↾
C
y
37
36
fveq2d
⊢
x
=
G
↾
C
→
F
OrdIso
E
ran
x
⋃
dom
x
-1
∘
x
⋃
dom
x
y
=
F
OrdIso
E
ran
G
↾
C
⋃
dom
G
↾
C
-1
∘
G
↾
C
⋃
dom
G
↾
C
y
38
16
28
37
ifbieq12d
⊢
x
=
G
↾
C
→
if
dom
x
=
⋃
dom
x
suc
⋃
ran
⋃
ran
x
⋅
𝑜
rank
y
+
𝑜
x
suc
rank
y
y
F
OrdIso
E
ran
x
⋃
dom
x
-1
∘
x
⋃
dom
x
y
=
if
dom
G
↾
C
=
⋃
dom
G
↾
C
suc
⋃
ran
⋃
G
C
⋅
𝑜
rank
y
+
𝑜
G
↾
C
suc
rank
y
y
F
OrdIso
E
ran
G
↾
C
⋃
dom
G
↾
C
-1
∘
G
↾
C
⋃
dom
G
↾
C
y
39
14
38
mpteq12dv
⊢
x
=
G
↾
C
→
y
∈
R
1
dom
x
⟼
if
dom
x
=
⋃
dom
x
suc
⋃
ran
⋃
ran
x
⋅
𝑜
rank
y
+
𝑜
x
suc
rank
y
y
F
OrdIso
E
ran
x
⋃
dom
x
-1
∘
x
⋃
dom
x
y
=
y
∈
R
1
dom
G
↾
C
⟼
if
dom
G
↾
C
=
⋃
dom
G
↾
C
suc
⋃
ran
⋃
G
C
⋅
𝑜
rank
y
+
𝑜
G
↾
C
suc
rank
y
y
F
OrdIso
E
ran
G
↾
C
⋃
dom
G
↾
C
-1
∘
G
↾
C
⋃
dom
G
↾
C
y
40
eqid
⊢
x
∈
V
⟼
y
∈
R
1
dom
x
⟼
if
dom
x
=
⋃
dom
x
suc
⋃
ran
⋃
ran
x
⋅
𝑜
rank
y
+
𝑜
x
suc
rank
y
y
F
OrdIso
E
ran
x
⋃
dom
x
-1
∘
x
⋃
dom
x
y
=
x
∈
V
⟼
y
∈
R
1
dom
x
⟼
if
dom
x
=
⋃
dom
x
suc
⋃
ran
⋃
ran
x
⋅
𝑜
rank
y
+
𝑜
x
suc
rank
y
y
F
OrdIso
E
ran
x
⋃
dom
x
-1
∘
x
⋃
dom
x
y
41
fvex
⊢
R
1
dom
G
↾
C
∈
V
42
41
mptex
⊢
y
∈
R
1
dom
G
↾
C
⟼
if
dom
G
↾
C
=
⋃
dom
G
↾
C
suc
⋃
ran
⋃
G
C
⋅
𝑜
rank
y
+
𝑜
G
↾
C
suc
rank
y
y
F
OrdIso
E
ran
G
↾
C
⋃
dom
G
↾
C
-1
∘
G
↾
C
⋃
dom
G
↾
C
y
∈
V
43
39
40
42
fvmpt
⊢
G
↾
C
∈
V
→
x
∈
V
⟼
y
∈
R
1
dom
x
⟼
if
dom
x
=
⋃
dom
x
suc
⋃
ran
⋃
ran
x
⋅
𝑜
rank
y
+
𝑜
x
suc
rank
y
y
F
OrdIso
E
ran
x
⋃
dom
x
-1
∘
x
⋃
dom
x
y
G
↾
C
=
y
∈
R
1
dom
G
↾
C
⟼
if
dom
G
↾
C
=
⋃
dom
G
↾
C
suc
⋃
ran
⋃
G
C
⋅
𝑜
rank
y
+
𝑜
G
↾
C
suc
rank
y
y
F
OrdIso
E
ran
G
↾
C
⋃
dom
G
↾
C
-1
∘
G
↾
C
⋃
dom
G
↾
C
y
44
12
43
syl
⊢
φ
→
x
∈
V
⟼
y
∈
R
1
dom
x
⟼
if
dom
x
=
⋃
dom
x
suc
⋃
ran
⋃
ran
x
⋅
𝑜
rank
y
+
𝑜
x
suc
rank
y
y
F
OrdIso
E
ran
x
⋃
dom
x
-1
∘
x
⋃
dom
x
y
G
↾
C
=
y
∈
R
1
dom
G
↾
C
⟼
if
dom
G
↾
C
=
⋃
dom
G
↾
C
suc
⋃
ran
⋃
G
C
⋅
𝑜
rank
y
+
𝑜
G
↾
C
suc
rank
y
y
F
OrdIso
E
ran
G
↾
C
⋃
dom
G
↾
C
-1
∘
G
↾
C
⋃
dom
G
↾
C
y
45
onss
⊢
C
∈
On
→
C
⊆
On
46
4
45
syl
⊢
φ
→
C
⊆
On
47
fnssres
⊢
G
Fn
On
∧
C
⊆
On
→
G
↾
C
Fn
C
48
8
46
47
sylancr
⊢
φ
→
G
↾
C
Fn
C
49
48
fndmd
⊢
φ
→
dom
G
↾
C
=
C
50
49
fveq2d
⊢
φ
→
R
1
dom
G
↾
C
=
R
1
C
51
50
mpteq1d
⊢
φ
→
y
∈
R
1
dom
G
↾
C
⟼
if
dom
G
↾
C
=
⋃
dom
G
↾
C
suc
⋃
ran
⋃
G
C
⋅
𝑜
rank
y
+
𝑜
G
↾
C
suc
rank
y
y
F
OrdIso
E
ran
G
↾
C
⋃
dom
G
↾
C
-1
∘
G
↾
C
⋃
dom
G
↾
C
y
=
y
∈
R
1
C
⟼
if
dom
G
↾
C
=
⋃
dom
G
↾
C
suc
⋃
ran
⋃
G
C
⋅
𝑜
rank
y
+
𝑜
G
↾
C
suc
rank
y
y
F
OrdIso
E
ran
G
↾
C
⋃
dom
G
↾
C
-1
∘
G
↾
C
⋃
dom
G
↾
C
y
52
49
adantr
⊢
φ
∧
y
∈
R
1
C
→
dom
G
↾
C
=
C
53
52
unieqd
⊢
φ
∧
y
∈
R
1
C
→
⋃
dom
G
↾
C
=
⋃
C
54
52
53
eqeq12d
⊢
φ
∧
y
∈
R
1
C
→
dom
G
↾
C
=
⋃
dom
G
↾
C
↔
C
=
⋃
C
55
54
ifbid
⊢
φ
∧
y
∈
R
1
C
→
if
dom
G
↾
C
=
⋃
dom
G
↾
C
suc
⋃
ran
⋃
G
C
⋅
𝑜
rank
y
+
𝑜
G
↾
C
suc
rank
y
y
F
OrdIso
E
ran
G
↾
C
⋃
dom
G
↾
C
-1
∘
G
↾
C
⋃
dom
G
↾
C
y
=
if
C
=
⋃
C
suc
⋃
ran
⋃
G
C
⋅
𝑜
rank
y
+
𝑜
G
↾
C
suc
rank
y
y
F
OrdIso
E
ran
G
↾
C
⋃
dom
G
↾
C
-1
∘
G
↾
C
⋃
dom
G
↾
C
y
56
rankr1ai
⊢
y
∈
R
1
C
→
rank
y
∈
C
57
56
ad2antlr
⊢
φ
∧
y
∈
R
1
C
∧
C
=
⋃
C
→
rank
y
∈
C
58
simpr
⊢
φ
∧
y
∈
R
1
C
∧
C
=
⋃
C
→
C
=
⋃
C
59
57
58
eleqtrd
⊢
φ
∧
y
∈
R
1
C
∧
C
=
⋃
C
→
rank
y
∈
⋃
C
60
eloni
⊢
C
∈
On
→
Ord
C
61
ordsucuniel
⊢
Ord
C
→
rank
y
∈
⋃
C
↔
suc
rank
y
∈
C
62
4
60
61
3syl
⊢
φ
→
rank
y
∈
⋃
C
↔
suc
rank
y
∈
C
63
62
ad2antrr
⊢
φ
∧
y
∈
R
1
C
∧
C
=
⋃
C
→
rank
y
∈
⋃
C
↔
suc
rank
y
∈
C
64
59
63
mpbid
⊢
φ
∧
y
∈
R
1
C
∧
C
=
⋃
C
→
suc
rank
y
∈
C
65
64
fvresd
⊢
φ
∧
y
∈
R
1
C
∧
C
=
⋃
C
→
G
↾
C
suc
rank
y
=
G
suc
rank
y
66
65
fveq1d
⊢
φ
∧
y
∈
R
1
C
∧
C
=
⋃
C
→
G
↾
C
suc
rank
y
y
=
G
suc
rank
y
y
67
66
oveq2d
⊢
φ
∧
y
∈
R
1
C
∧
C
=
⋃
C
→
suc
⋃
ran
⋃
G
C
⋅
𝑜
rank
y
+
𝑜
G
↾
C
suc
rank
y
y
=
suc
⋃
ran
⋃
G
C
⋅
𝑜
rank
y
+
𝑜
G
suc
rank
y
y
68
67
ifeq1da
⊢
φ
∧
y
∈
R
1
C
→
if
C
=
⋃
C
suc
⋃
ran
⋃
G
C
⋅
𝑜
rank
y
+
𝑜
G
↾
C
suc
rank
y
y
F
OrdIso
E
ran
G
↾
C
⋃
dom
G
↾
C
-1
∘
G
↾
C
⋃
dom
G
↾
C
y
=
if
C
=
⋃
C
suc
⋃
ran
⋃
G
C
⋅
𝑜
rank
y
+
𝑜
G
suc
rank
y
y
F
OrdIso
E
ran
G
↾
C
⋃
dom
G
↾
C
-1
∘
G
↾
C
⋃
dom
G
↾
C
y
69
53
adantr
⊢
φ
∧
y
∈
R
1
C
∧
¬
C
=
⋃
C
→
⋃
dom
G
↾
C
=
⋃
C
70
69
fveq2d
⊢
φ
∧
y
∈
R
1
C
∧
¬
C
=
⋃
C
→
G
↾
C
⋃
dom
G
↾
C
=
G
↾
C
⋃
C
71
4
ad2antrr
⊢
φ
∧
y
∈
R
1
C
∧
¬
C
=
⋃
C
→
C
∈
On
72
uniexg
⊢
C
∈
On
→
⋃
C
∈
V
73
sucidg
⊢
⋃
C
∈
V
→
⋃
C
∈
suc
⋃
C
74
71
72
73
3syl
⊢
φ
∧
y
∈
R
1
C
∧
¬
C
=
⋃
C
→
⋃
C
∈
suc
⋃
C
75
4
adantr
⊢
φ
∧
y
∈
R
1
C
→
C
∈
On
76
orduniorsuc
⊢
Ord
C
→
C
=
⋃
C
∨
C
=
suc
⋃
C
77
75
60
76
3syl
⊢
φ
∧
y
∈
R
1
C
→
C
=
⋃
C
∨
C
=
suc
⋃
C
78
77
orcanai
⊢
φ
∧
y
∈
R
1
C
∧
¬
C
=
⋃
C
→
C
=
suc
⋃
C
79
74
78
eleqtrrd
⊢
φ
∧
y
∈
R
1
C
∧
¬
C
=
⋃
C
→
⋃
C
∈
C
80
79
fvresd
⊢
φ
∧
y
∈
R
1
C
∧
¬
C
=
⋃
C
→
G
↾
C
⋃
C
=
G
⋃
C
81
70
80
eqtrd
⊢
φ
∧
y
∈
R
1
C
∧
¬
C
=
⋃
C
→
G
↾
C
⋃
dom
G
↾
C
=
G
⋃
C
82
81
rneqd
⊢
φ
∧
y
∈
R
1
C
∧
¬
C
=
⋃
C
→
ran
G
↾
C
⋃
dom
G
↾
C
=
ran
G
⋃
C
83
oieq2
⊢
ran
G
↾
C
⋃
dom
G
↾
C
=
ran
G
⋃
C
→
OrdIso
E
ran
G
↾
C
⋃
dom
G
↾
C
=
OrdIso
E
ran
G
⋃
C
84
82
83
syl
⊢
φ
∧
y
∈
R
1
C
∧
¬
C
=
⋃
C
→
OrdIso
E
ran
G
↾
C
⋃
dom
G
↾
C
=
OrdIso
E
ran
G
⋃
C
85
84
cnveqd
⊢
φ
∧
y
∈
R
1
C
∧
¬
C
=
⋃
C
→
OrdIso
E
ran
G
↾
C
⋃
dom
G
↾
C
-1
=
OrdIso
E
ran
G
⋃
C
-1
86
85
81
coeq12d
⊢
φ
∧
y
∈
R
1
C
∧
¬
C
=
⋃
C
→
OrdIso
E
ran
G
↾
C
⋃
dom
G
↾
C
-1
∘
G
↾
C
⋃
dom
G
↾
C
=
OrdIso
E
ran
G
⋃
C
-1
∘
G
⋃
C
87
86
5
eqtr4di
⊢
φ
∧
y
∈
R
1
C
∧
¬
C
=
⋃
C
→
OrdIso
E
ran
G
↾
C
⋃
dom
G
↾
C
-1
∘
G
↾
C
⋃
dom
G
↾
C
=
H
88
87
imaeq1d
⊢
φ
∧
y
∈
R
1
C
∧
¬
C
=
⋃
C
→
OrdIso
E
ran
G
↾
C
⋃
dom
G
↾
C
-1
∘
G
↾
C
⋃
dom
G
↾
C
y
=
H
y
89
88
fveq2d
⊢
φ
∧
y
∈
R
1
C
∧
¬
C
=
⋃
C
→
F
OrdIso
E
ran
G
↾
C
⋃
dom
G
↾
C
-1
∘
G
↾
C
⋃
dom
G
↾
C
y
=
F
H
y
90
89
ifeq2da
⊢
φ
∧
y
∈
R
1
C
→
if
C
=
⋃
C
suc
⋃
ran
⋃
G
C
⋅
𝑜
rank
y
+
𝑜
G
suc
rank
y
y
F
OrdIso
E
ran
G
↾
C
⋃
dom
G
↾
C
-1
∘
G
↾
C
⋃
dom
G
↾
C
y
=
if
C
=
⋃
C
suc
⋃
ran
⋃
G
C
⋅
𝑜
rank
y
+
𝑜
G
suc
rank
y
y
F
H
y
91
55
68
90
3eqtrd
⊢
φ
∧
y
∈
R
1
C
→
if
dom
G
↾
C
=
⋃
dom
G
↾
C
suc
⋃
ran
⋃
G
C
⋅
𝑜
rank
y
+
𝑜
G
↾
C
suc
rank
y
y
F
OrdIso
E
ran
G
↾
C
⋃
dom
G
↾
C
-1
∘
G
↾
C
⋃
dom
G
↾
C
y
=
if
C
=
⋃
C
suc
⋃
ran
⋃
G
C
⋅
𝑜
rank
y
+
𝑜
G
suc
rank
y
y
F
H
y
92
91
mpteq2dva
⊢
φ
→
y
∈
R
1
C
⟼
if
dom
G
↾
C
=
⋃
dom
G
↾
C
suc
⋃
ran
⋃
G
C
⋅
𝑜
rank
y
+
𝑜
G
↾
C
suc
rank
y
y
F
OrdIso
E
ran
G
↾
C
⋃
dom
G
↾
C
-1
∘
G
↾
C
⋃
dom
G
↾
C
y
=
y
∈
R
1
C
⟼
if
C
=
⋃
C
suc
⋃
ran
⋃
G
C
⋅
𝑜
rank
y
+
𝑜
G
suc
rank
y
y
F
H
y
93
51
92
eqtrd
⊢
φ
→
y
∈
R
1
dom
G
↾
C
⟼
if
dom
G
↾
C
=
⋃
dom
G
↾
C
suc
⋃
ran
⋃
G
C
⋅
𝑜
rank
y
+
𝑜
G
↾
C
suc
rank
y
y
F
OrdIso
E
ran
G
↾
C
⋃
dom
G
↾
C
-1
∘
G
↾
C
⋃
dom
G
↾
C
y
=
y
∈
R
1
C
⟼
if
C
=
⋃
C
suc
⋃
ran
⋃
G
C
⋅
𝑜
rank
y
+
𝑜
G
suc
rank
y
y
F
H
y
94
7
44
93
3eqtrd
⊢
φ
→
G
C
=
y
∈
R
1
C
⟼
if
C
=
⋃
C
suc
⋃
ran
⋃
G
C
⋅
𝑜
rank
y
+
𝑜
G
suc
rank
y
y
F
H
y