Metamath Proof Explorer


Theorem dfac12lem2

Description: Lemma for dfac12 . (Contributed by Mario Carneiro, 29-May-2015)

Ref Expression
Hypotheses dfac12.1 φAOn
dfac12.3 φF:𝒫harR1A1-1On
dfac12.4 G=recsxVyR1domxifdomx=domxsucranranx𝑜ranky+𝑜xsucrankyyFOrdIsoEranxdomx-1xdomxy
dfac12.5 φCOn
dfac12.h H=OrdIsoEranGC-1GC
dfac12.6 φCA
dfac12.8 φzCGz:R1z1-1On
Assertion dfac12lem2 φGC:R1C1-1On

Proof

Step Hyp Ref Expression
1 dfac12.1 φAOn
2 dfac12.3 φF:𝒫harR1A1-1On
3 dfac12.4 G=recsxVyR1domxifdomx=domxsucranranx𝑜ranky+𝑜xsucrankyyFOrdIsoEranxdomx-1xdomxy
4 dfac12.5 φCOn
5 dfac12.h H=OrdIsoEranGC-1GC
6 dfac12.6 φCA
7 dfac12.8 φzCGz:R1z1-1On
8 3 tfr1 GFnOn
9 fnfun GFnOnFunG
10 8 9 ax-mp FunG
11 funimaexg FunGCOnGCV
12 10 4 11 sylancr φGCV
13 uniexg GCVGCV
14 rnexg GCVranGCV
15 12 13 14 3syl φranGCV
16 f1f Gz:R1z1-1OnGz:R1zOn
17 fssxp Gz:R1zOnGzR1z×On
18 ssv R1zV
19 xpss1 R1zVR1z×OnV×On
20 18 19 ax-mp R1z×OnV×On
21 sstr GzR1z×OnR1z×OnV×OnGzV×On
22 20 21 mpan2 GzR1z×OnGzV×On
23 fvex GzV
24 23 elpw Gz𝒫V×OnGzV×On
25 22 24 sylibr GzR1z×OnGz𝒫V×On
26 16 17 25 3syl Gz:R1z1-1OnGz𝒫V×On
27 26 ralimi zCGz:R1z1-1OnzCGz𝒫V×On
28 7 27 syl φzCGz𝒫V×On
29 onss COnCOn
30 4 29 syl φCOn
31 8 fndmi domG=On
32 30 31 sseqtrrdi φCdomG
33 funimass4 FunGCdomGGC𝒫V×OnzCGz𝒫V×On
34 10 32 33 sylancr φGC𝒫V×OnzCGz𝒫V×On
35 28 34 mpbird φGC𝒫V×On
36 sspwuni GC𝒫V×OnGCV×On
37 35 36 sylib φGCV×On
38 rnss GCV×OnranGCranV×On
39 37 38 syl φranGCranV×On
40 rnxpss ranV×OnOn
41 39 40 sstrdi φranGCOn
42 ssonuni ranGCVranGCOnranGCOn
43 15 41 42 sylc φranGCOn
44 onsuc ranGCOnsucranGCOn
45 43 44 syl φsucranGCOn
46 45 ad2antrr φyR1CC=CsucranGCOn
47 rankon rankyOn
48 omcl sucranGCOnrankyOnsucranGC𝑜rankyOn
49 46 47 48 sylancl φyR1CC=CsucranGC𝑜rankyOn
50 fveq2 z=sucrankyGz=Gsucranky
51 f1eq1 Gz=GsucrankyGz:R1z1-1OnGsucranky:R1z1-1On
52 50 51 syl z=sucrankyGz:R1z1-1OnGsucranky:R1z1-1On
53 fveq2 z=sucrankyR1z=R1sucranky
54 f1eq2 R1z=R1sucrankyGsucranky:R1z1-1OnGsucranky:R1sucranky1-1On
55 53 54 syl z=sucrankyGsucranky:R1z1-1OnGsucranky:R1sucranky1-1On
56 52 55 bitrd z=sucrankyGz:R1z1-1OnGsucranky:R1sucranky1-1On
57 7 ad2antrr φyR1CC=CzCGz:R1z1-1On
58 rankr1ai yR1CrankyC
59 58 ad2antlr φyR1CC=CrankyC
60 simpr φyR1CC=CC=C
61 59 60 eleqtrd φyR1CC=CrankyC
62 eloni COnOrdC
63 4 62 syl φOrdC
64 63 ad2antrr φyR1CC=COrdC
65 ordsucuniel OrdCrankyCsucrankyC
66 64 65 syl φyR1CC=CrankyCsucrankyC
67 61 66 mpbid φyR1CC=CsucrankyC
68 56 57 67 rspcdva φyR1CC=CGsucranky:R1sucranky1-1On
69 f1f Gsucranky:R1sucranky1-1OnGsucranky:R1sucrankyOn
70 68 69 syl φyR1CC=CGsucranky:R1sucrankyOn
71 r1elwf yR1CyR1On
72 71 ad2antlr φyR1CC=CyR1On
73 rankidb yR1OnyR1sucranky
74 72 73 syl φyR1CC=CyR1sucranky
75 70 74 ffvelcdmd φyR1CC=CGsucrankyyOn
76 oacl sucranGC𝑜rankyOnGsucrankyyOnsucranGC𝑜ranky+𝑜GsucrankyyOn
77 49 75 76 syl2anc φyR1CC=CsucranGC𝑜ranky+𝑜GsucrankyyOn
78 f1f F:𝒫harR1A1-1OnF:𝒫harR1AOn
79 2 78 syl φF:𝒫harR1AOn
80 79 ad2antrr φyR1C¬C=CF:𝒫harR1AOn
81 imassrn HyranH
82 fvex GCV
83 82 rnex ranGCV
84 fveq2 z=CGz=GC
85 f1eq1 Gz=GCGz:R1z1-1OnGC:R1z1-1On
86 84 85 syl z=CGz:R1z1-1OnGC:R1z1-1On
87 fveq2 z=CR1z=R1C
88 f1eq2 R1z=R1CGC:R1z1-1OnGC:R1C1-1On
89 87 88 syl z=CGC:R1z1-1OnGC:R1C1-1On
90 86 89 bitrd z=CGz:R1z1-1OnGC:R1C1-1On
91 7 ad2antrr φyR1C¬C=CzCGz:R1z1-1On
92 4 ad2antrr φyR1C¬C=CCOn
93 onuni COnCOn
94 sucidg COnCsucC
95 92 93 94 3syl φyR1C¬C=CCsucC
96 63 adantr φyR1COrdC
97 orduniorsuc OrdCC=CC=sucC
98 96 97 syl φyR1CC=CC=sucC
99 98 orcanai φyR1C¬C=CC=sucC
100 95 99 eleqtrrd φyR1C¬C=CCC
101 90 91 100 rspcdva φyR1C¬C=CGC:R1C1-1On
102 f1f GC:R1C1-1OnGC:R1COn
103 frn GC:R1COnranGCOn
104 101 102 103 3syl φyR1C¬C=CranGCOn
105 epweon EWeOn
106 wess ranGCOnEWeOnEWeranGC
107 104 105 106 mpisyl φyR1C¬C=CEWeranGC
108 eqid OrdIsoEranGC=OrdIsoEranGC
109 108 oiiso ranGCVEWeranGCOrdIsoEranGCIsomE,EdomOrdIsoEranGCranGC
110 83 107 109 sylancr φyR1C¬C=COrdIsoEranGCIsomE,EdomOrdIsoEranGCranGC
111 isof1o OrdIsoEranGCIsomE,EdomOrdIsoEranGCranGCOrdIsoEranGC:domOrdIsoEranGC1-1 ontoranGC
112 f1ocnv OrdIsoEranGC:domOrdIsoEranGC1-1 ontoranGCOrdIsoEranGC-1:ranGC1-1 ontodomOrdIsoEranGC
113 f1of1 OrdIsoEranGC-1:ranGC1-1 ontodomOrdIsoEranGCOrdIsoEranGC-1:ranGC1-1domOrdIsoEranGC
114 110 111 112 113 4syl φyR1C¬C=COrdIsoEranGC-1:ranGC1-1domOrdIsoEranGC
115 f1f1orn GC:R1C1-1OnGC:R1C1-1 ontoranGC
116 f1of1 GC:R1C1-1 ontoranGCGC:R1C1-1ranGC
117 101 115 116 3syl φyR1C¬C=CGC:R1C1-1ranGC
118 f1co OrdIsoEranGC-1:ranGC1-1domOrdIsoEranGCGC:R1C1-1ranGCOrdIsoEranGC-1GC:R1C1-1domOrdIsoEranGC
119 114 117 118 syl2anc φyR1C¬C=COrdIsoEranGC-1GC:R1C1-1domOrdIsoEranGC
120 f1eq1 H=OrdIsoEranGC-1GCH:R1C1-1domOrdIsoEranGCOrdIsoEranGC-1GC:R1C1-1domOrdIsoEranGC
121 5 120 ax-mp H:R1C1-1domOrdIsoEranGCOrdIsoEranGC-1GC:R1C1-1domOrdIsoEranGC
122 119 121 sylibr φyR1C¬C=CH:R1C1-1domOrdIsoEranGC
123 f1f H:R1C1-1domOrdIsoEranGCH:R1CdomOrdIsoEranGC
124 frn H:R1CdomOrdIsoEranGCranHdomOrdIsoEranGC
125 122 123 124 3syl φyR1C¬C=CranHdomOrdIsoEranGC
126 harcl harR1AOn
127 126 onordi OrdharR1A
128 108 oion ranGCVdomOrdIsoEranGCOn
129 83 128 mp1i φyR1C¬C=CdomOrdIsoEranGCOn
130 108 oien ranGCVEWeranGCdomOrdIsoEranGCranGC
131 83 107 130 sylancr φyR1C¬C=CdomOrdIsoEranGCranGC
132 fvex R1CV
133 132 f1oen GC:R1C1-1 ontoranGCR1CranGC
134 ensym R1CranGCranGCR1C
135 101 115 133 134 4syl φyR1C¬C=CranGCR1C
136 fvex R1AV
137 1 ad2antrr φyR1C¬C=CAOn
138 6 ad2antrr φyR1C¬C=CCA
139 138 100 sseldd φyR1C¬C=CCA
140 r1ord2 AOnCAR1CR1A
141 137 139 140 sylc φyR1C¬C=CR1CR1A
142 ssdomg R1AVR1CR1AR1CR1A
143 136 141 142 mpsyl φyR1C¬C=CR1CR1A
144 endomtr ranGCR1CR1CR1AranGCR1A
145 135 143 144 syl2anc φyR1C¬C=CranGCR1A
146 endomtr domOrdIsoEranGCranGCranGCR1AdomOrdIsoEranGCR1A
147 131 145 146 syl2anc φyR1C¬C=CdomOrdIsoEranGCR1A
148 elharval domOrdIsoEranGCharR1AdomOrdIsoEranGCOndomOrdIsoEranGCR1A
149 129 147 148 sylanbrc φyR1C¬C=CdomOrdIsoEranGCharR1A
150 ordelss OrdharR1AdomOrdIsoEranGCharR1AdomOrdIsoEranGCharR1A
151 127 149 150 sylancr φyR1C¬C=CdomOrdIsoEranGCharR1A
152 125 151 sstrd φyR1C¬C=CranHharR1A
153 81 152 sstrid φyR1C¬C=CHyharR1A
154 fvex harR1AV
155 154 elpw2 Hy𝒫harR1AHyharR1A
156 153 155 sylibr φyR1C¬C=CHy𝒫harR1A
157 80 156 ffvelcdmd φyR1C¬C=CFHyOn
158 77 157 ifclda φyR1CifC=CsucranGC𝑜ranky+𝑜GsucrankyyFHyOn
159 158 ex φyR1CifC=CsucranGC𝑜ranky+𝑜GsucrankyyFHyOn
160 iftrue C=CifC=CsucranGC𝑜ranky+𝑜GsucrankyyFHy=sucranGC𝑜ranky+𝑜Gsucrankyy
161 iftrue C=CifC=CsucranGC𝑜rankz+𝑜GsucrankzzFHz=sucranGC𝑜rankz+𝑜Gsucrankzz
162 160 161 eqeq12d C=CifC=CsucranGC𝑜ranky+𝑜GsucrankyyFHy=ifC=CsucranGC𝑜rankz+𝑜GsucrankzzFHzsucranGC𝑜ranky+𝑜Gsucrankyy=sucranGC𝑜rankz+𝑜Gsucrankzz
163 162 adantl φyR1CzR1CC=CifC=CsucranGC𝑜ranky+𝑜GsucrankyyFHy=ifC=CsucranGC𝑜rankz+𝑜GsucrankzzFHzsucranGC𝑜ranky+𝑜Gsucrankyy=sucranGC𝑜rankz+𝑜Gsucrankzz
164 45 ad2antrr φyR1CzR1CC=CsucranGCOn
165 nsuceq0 sucranGC
166 165 a1i φyR1CzR1CC=CsucranGC
167 47 a1i φyR1CzR1CC=CrankyOn
168 onsucuni ranGCOnranGCsucranGC
169 41 168 syl φranGCsucranGC
170 169 ad2antrr φyR1CC=CranGCsucranGC
171 30 ad2antrr φyR1CC=CCOn
172 fnfvima GFnOnCOnsucrankyCGsucrankyGC
173 8 171 67 172 mp3an2i φyR1CC=CGsucrankyGC
174 elssuni GsucrankyGCGsucrankyGC
175 rnss GsucrankyGCranGsucrankyranGC
176 173 174 175 3syl φyR1CC=CranGsucrankyranGC
177 f1fn Gsucranky:R1sucranky1-1OnGsucrankyFnR1sucranky
178 68 177 syl φyR1CC=CGsucrankyFnR1sucranky
179 fnfvelrn GsucrankyFnR1sucrankyyR1sucrankyGsucrankyyranGsucranky
180 178 74 179 syl2anc φyR1CC=CGsucrankyyranGsucranky
181 176 180 sseldd φyR1CC=CGsucrankyyranGC
182 170 181 sseldd φyR1CC=CGsucrankyysucranGC
183 182 adantlrr φyR1CzR1CC=CGsucrankyysucranGC
184 rankon rankzOn
185 184 a1i φyR1CzR1CC=CrankzOn
186 eleq1w y=zyR1CzR1C
187 186 anbi2d y=zφyR1CφzR1C
188 187 anbi1d y=zφyR1CC=CφzR1CC=C
189 fveq2 y=zranky=rankz
190 suceq ranky=rankzsucranky=sucrankz
191 189 190 syl y=zsucranky=sucrankz
192 191 fveq2d y=zGsucranky=Gsucrankz
193 id y=zy=z
194 192 193 fveq12d y=zGsucrankyy=Gsucrankzz
195 194 eleq1d y=zGsucrankyysucranGCGsucrankzzsucranGC
196 188 195 imbi12d y=zφyR1CC=CGsucrankyysucranGCφzR1CC=CGsucrankzzsucranGC
197 196 182 chvarvv φzR1CC=CGsucrankzzsucranGC
198 197 adantlrl φyR1CzR1CC=CGsucrankzzsucranGC
199 omopth2 sucranGCOnsucranGCrankyOnGsucrankyysucranGCrankzOnGsucrankzzsucranGCsucranGC𝑜ranky+𝑜Gsucrankyy=sucranGC𝑜rankz+𝑜Gsucrankzzranky=rankzGsucrankyy=Gsucrankzz
200 164 166 167 183 185 198 199 syl222anc φyR1CzR1CC=CsucranGC𝑜ranky+𝑜Gsucrankyy=sucranGC𝑜rankz+𝑜Gsucrankzzranky=rankzGsucrankyy=Gsucrankzz
201 190 adantl φyR1CzR1CC=Cranky=rankzsucranky=sucrankz
202 201 fveq2d φyR1CzR1CC=Cranky=rankzGsucranky=Gsucrankz
203 202 fveq1d φyR1CzR1CC=Cranky=rankzGsucrankyz=Gsucrankzz
204 203 eqeq2d φyR1CzR1CC=Cranky=rankzGsucrankyy=GsucrankyzGsucrankyy=Gsucrankzz
205 68 adantlrr φyR1CzR1CC=CGsucranky:R1sucranky1-1On
206 205 adantr φyR1CzR1CC=Cranky=rankzGsucranky:R1sucranky1-1On
207 74 adantlrr φyR1CzR1CC=CyR1sucranky
208 207 adantr φyR1CzR1CC=Cranky=rankzyR1sucranky
209 r1elwf zR1CzR1On
210 rankidb zR1OnzR1sucrankz
211 209 210 syl zR1CzR1sucrankz
212 211 ad2antll φyR1CzR1CzR1sucrankz
213 212 ad2antrr φyR1CzR1CC=Cranky=rankzzR1sucrankz
214 201 fveq2d φyR1CzR1CC=Cranky=rankzR1sucranky=R1sucrankz
215 213 214 eleqtrrd φyR1CzR1CC=Cranky=rankzzR1sucranky
216 f1fveq Gsucranky:R1sucranky1-1OnyR1sucrankyzR1sucrankyGsucrankyy=Gsucrankyzy=z
217 206 208 215 216 syl12anc φyR1CzR1CC=Cranky=rankzGsucrankyy=Gsucrankyzy=z
218 204 217 bitr3d φyR1CzR1CC=Cranky=rankzGsucrankyy=Gsucrankzzy=z
219 218 biimpd φyR1CzR1CC=Cranky=rankzGsucrankyy=Gsucrankzzy=z
220 219 expimpd φyR1CzR1CC=Cranky=rankzGsucrankyy=Gsucrankzzy=z
221 189 194 jca y=zranky=rankzGsucrankyy=Gsucrankzz
222 220 221 impbid1 φyR1CzR1CC=Cranky=rankzGsucrankyy=Gsucrankzzy=z
223 163 200 222 3bitrd φyR1CzR1CC=CifC=CsucranGC𝑜ranky+𝑜GsucrankyyFHy=ifC=CsucranGC𝑜rankz+𝑜GsucrankzzFHzy=z
224 iffalse ¬C=CifC=CsucranGC𝑜ranky+𝑜GsucrankyyFHy=FHy
225 iffalse ¬C=CifC=CsucranGC𝑜rankz+𝑜GsucrankzzFHz=FHz
226 224 225 eqeq12d ¬C=CifC=CsucranGC𝑜ranky+𝑜GsucrankyyFHy=ifC=CsucranGC𝑜rankz+𝑜GsucrankzzFHzFHy=FHz
227 226 adantl φyR1CzR1C¬C=CifC=CsucranGC𝑜ranky+𝑜GsucrankyyFHy=ifC=CsucranGC𝑜rankz+𝑜GsucrankzzFHzFHy=FHz
228 2 ad2antrr φyR1CzR1C¬C=CF:𝒫harR1A1-1On
229 156 adantlrr φyR1CzR1C¬C=CHy𝒫harR1A
230 187 anbi1d y=zφyR1C¬C=CφzR1C¬C=C
231 imaeq2 y=zHy=Hz
232 231 eleq1d y=zHy𝒫harR1AHz𝒫harR1A
233 230 232 imbi12d y=zφyR1C¬C=CHy𝒫harR1AφzR1C¬C=CHz𝒫harR1A
234 233 156 chvarvv φzR1C¬C=CHz𝒫harR1A
235 234 adantlrl φyR1CzR1C¬C=CHz𝒫harR1A
236 f1fveq F:𝒫harR1A1-1OnHy𝒫harR1AHz𝒫harR1AFHy=FHzHy=Hz
237 228 229 235 236 syl12anc φyR1CzR1C¬C=CFHy=FHzHy=Hz
238 122 adantlrr φyR1CzR1C¬C=CH:R1C1-1domOrdIsoEranGC
239 simplrl φyR1CzR1C¬C=CyR1C
240 99 fveq2d φyR1C¬C=CR1C=R1sucC
241 r1suc COnR1sucC=𝒫R1C
242 92 93 241 3syl φyR1C¬C=CR1sucC=𝒫R1C
243 240 242 eqtrd φyR1C¬C=CR1C=𝒫R1C
244 243 adantlrr φyR1CzR1C¬C=CR1C=𝒫R1C
245 239 244 eleqtrd φyR1CzR1C¬C=Cy𝒫R1C
246 245 elpwid φyR1CzR1C¬C=CyR1C
247 simplrr φyR1CzR1C¬C=CzR1C
248 247 244 eleqtrd φyR1CzR1C¬C=Cz𝒫R1C
249 248 elpwid φyR1CzR1C¬C=CzR1C
250 f1imaeq H:R1C1-1domOrdIsoEranGCyR1CzR1CHy=Hzy=z
251 238 246 249 250 syl12anc φyR1CzR1C¬C=CHy=Hzy=z
252 227 237 251 3bitrd φyR1CzR1C¬C=CifC=CsucranGC𝑜ranky+𝑜GsucrankyyFHy=ifC=CsucranGC𝑜rankz+𝑜GsucrankzzFHzy=z
253 223 252 pm2.61dan φyR1CzR1CifC=CsucranGC𝑜ranky+𝑜GsucrankyyFHy=ifC=CsucranGC𝑜rankz+𝑜GsucrankzzFHzy=z
254 253 ex φyR1CzR1CifC=CsucranGC𝑜ranky+𝑜GsucrankyyFHy=ifC=CsucranGC𝑜rankz+𝑜GsucrankzzFHzy=z
255 159 254 dom2lem φyR1CifC=CsucranGC𝑜ranky+𝑜GsucrankyyFHy:R1C1-1On
256 1 2 3 4 5 dfac12lem1 φGC=yR1CifC=CsucranGC𝑜ranky+𝑜GsucrankyyFHy
257 f1eq1 GC=yR1CifC=CsucranGC𝑜ranky+𝑜GsucrankyyFHyGC:R1C1-1OnyR1CifC=CsucranGC𝑜ranky+𝑜GsucrankyyFHy:R1C1-1On
258 256 257 syl φGC:R1C1-1OnyR1CifC=CsucranGC𝑜ranky+𝑜GsucrankyyFHy:R1C1-1On
259 255 258 mpbird φGC:R1C1-1On