Metamath Proof Explorer


Theorem dflim5

Description: A limit ordinal is either the proper class of ordinals or some nonzero product with omega. (Contributed by RP, 8-Jan-2025)

Ref Expression
Assertion dflim5 LimAA=OnxOn1𝑜A=ω𝑜x

Proof

Step Hyp Ref Expression
1 limord LimAOrdA
2 ordeleqon OrdAAOnA=On
3 2 biimpi OrdAAOnA=On
4 3 orcomd OrdAA=OnAOn
5 1 4 syl LimAA=OnAOn
6 5 pm4.71ri LimAA=OnAOnLimA
7 andir A=OnAOnLimAA=OnLimAAOnLimA
8 6 7 bitri LimAA=OnLimAAOnLimA
9 limon LimOn
10 limeq A=OnLimALimOn
11 9 10 mpbiri A=OnLimA
12 11 pm4.71i A=OnA=OnLimA
13 12 orbi1i A=OnAOnLimAA=OnLimAAOnLimA
14 simpl AOnLimAAOn
15 omelon ωOn
16 15 a1i AOnωOn
17 id AOnAOn
18 peano1 ω
19 18 ne0ii ω
20 19 a1i AOnω
21 16 17 20 3jca AOnωOnAOnω
22 omeulem1 ωOnAOnωxOnyωω𝑜x+𝑜y=A
23 14 21 22 3syl AOnLimAxOnyωω𝑜x+𝑜y=A
24 limeq ω𝑜x+𝑜y=ALimω𝑜x+𝑜yLimA
25 24 biimprd ω𝑜x+𝑜y=ALimALimω𝑜x+𝑜y
26 simplr xOnyω¬xyω
27 nnlim yω¬Limy
28 26 27 syl xOnyω¬x¬Limy
29 on0eln0 xOnxx
30 29 biimprd xOnxx
31 30 necon1bd xOn¬xx=
32 31 adantr xOnyω¬xx=
33 32 imp xOnyω¬xx=
34 33 26 jca xOnyω¬xx=yω
35 simpl x=yωx=
36 35 oveq2d x=yωω𝑜x=ω𝑜
37 om0 ωOnω𝑜=
38 15 37 mp1i x=yωω𝑜=
39 36 38 eqtrd x=yωω𝑜x=
40 39 oveq1d x=yωω𝑜x+𝑜y=+𝑜y
41 nna0r yω+𝑜y=y
42 41 adantl x=yω+𝑜y=y
43 40 42 eqtrd x=yωω𝑜x+𝑜y=y
44 limeq ω𝑜x+𝑜y=yLimω𝑜x+𝑜yLimy
45 34 43 44 3syl xOnyω¬xLimω𝑜x+𝑜yLimy
46 28 45 mtbird xOnyω¬x¬Limω𝑜x+𝑜y
47 46 ex xOnyω¬x¬Limω𝑜x+𝑜y
48 ovex ω𝑜x+𝑜yV
49 nlimsucg ω𝑜x+𝑜yV¬Limsucω𝑜x+𝑜y
50 48 49 mp1i xOnyω¬y=¬Limsucω𝑜x+𝑜y
51 nnord yωOrdy
52 orduniorsuc Ordyy=yy=sucy
53 51 52 syl yωy=yy=sucy
54 3ianor ¬Ordyyy=y¬Ordy¬y¬y=y
55 df-lim LimyOrdyyy=y
56 54 55 xchnxbir ¬Limy¬Ordy¬y¬y=y
57 27 56 sylib yω¬Ordy¬y¬y=y
58 51 pm2.24d yω¬Ordyy=yy=
59 nne ¬yy=
60 59 biimpi ¬yy=
61 60 a1i13 yω¬yy=yy=
62 pm2.21 ¬y=yy=yy=
63 62 a1i yω¬y=yy=yy=
64 58 61 63 3jaod yω¬Ordy¬y¬y=yy=yy=
65 57 64 mpd yωy=yy=
66 65 orim1d yωy=yy=sucyy=y=sucy
67 53 66 mpd yωy=y=sucy
68 67 ord yω¬y=y=sucy
69 68 adantl xOnyω¬y=y=sucy
70 69 imp xOnyω¬y=y=sucy
71 70 oveq2d xOnyω¬y=ω𝑜x+𝑜y=ω𝑜x+𝑜sucy
72 simpl xOnyωxOn
73 72 adantr xOnyω¬y=xOn
74 omcl ωOnxOnω𝑜xOn
75 15 73 74 sylancr xOnyω¬y=ω𝑜xOn
76 nnon yωyOn
77 onuni yOnyOn
78 76 77 syl yωyOn
79 78 adantl xOnyωyOn
80 79 adantr xOnyω¬y=yOn
81 oasuc ω𝑜xOnyOnω𝑜x+𝑜sucy=sucω𝑜x+𝑜y
82 75 80 81 syl2anc xOnyω¬y=ω𝑜x+𝑜sucy=sucω𝑜x+𝑜y
83 71 82 eqtrd xOnyω¬y=ω𝑜x+𝑜y=sucω𝑜x+𝑜y
84 limeq ω𝑜x+𝑜y=sucω𝑜x+𝑜yLimω𝑜x+𝑜yLimsucω𝑜x+𝑜y
85 83 84 syl xOnyω¬y=Limω𝑜x+𝑜yLimsucω𝑜x+𝑜y
86 50 85 mtbird xOnyω¬y=¬Limω𝑜x+𝑜y
87 86 ex xOnyω¬y=¬Limω𝑜x+𝑜y
88 47 87 jaod xOnyω¬x¬y=¬Limω𝑜x+𝑜y
89 88 con2d xOnyωLimω𝑜x+𝑜y¬¬x¬y=
90 anor xy=¬¬x¬y=
91 89 90 syl6ibr xOnyωLimω𝑜x+𝑜yxy=
92 25 91 syl9 ω𝑜x+𝑜y=AxOnyωLimAxy=
93 92 com13 LimAxOnyωω𝑜x+𝑜y=Axy=
94 93 adantl AOnLimAxOnyωω𝑜x+𝑜y=Axy=
95 94 3imp AOnLimAxOnyωω𝑜x+𝑜y=Axy=
96 simp2 AOnLimAxOnyωω𝑜x+𝑜y=AxOnyω
97 96 72 syl AOnLimAxOnyωω𝑜x+𝑜y=AxOn
98 simpl xy=x
99 97 98 anim12i AOnLimAxOnyωω𝑜x+𝑜y=Axy=xOnx
100 ondif1 xOn1𝑜xOnx
101 99 100 sylibr AOnLimAxOnyωω𝑜x+𝑜y=Axy=xOn1𝑜
102 simpr xy=y=
103 102 oveq2d xy=ω𝑜x+𝑜y=ω𝑜x+𝑜
104 103 adantl AOnLimAxOnyωω𝑜x+𝑜y=Axy=ω𝑜x+𝑜y=ω𝑜x+𝑜
105 simpl3 AOnLimAxOnyωω𝑜x+𝑜y=Axy=ω𝑜x+𝑜y=A
106 15 72 74 sylancr xOnyωω𝑜xOn
107 oa0 ω𝑜xOnω𝑜x+𝑜=ω𝑜x
108 96 106 107 3syl AOnLimAxOnyωω𝑜x+𝑜y=Aω𝑜x+𝑜=ω𝑜x
109 108 adantr AOnLimAxOnyωω𝑜x+𝑜y=Axy=ω𝑜x+𝑜=ω𝑜x
110 104 105 109 3eqtr3d AOnLimAxOnyωω𝑜x+𝑜y=Axy=A=ω𝑜x
111 101 110 jca AOnLimAxOnyωω𝑜x+𝑜y=Axy=xOn1𝑜A=ω𝑜x
112 95 111 mpdan AOnLimAxOnyωω𝑜x+𝑜y=AxOn1𝑜A=ω𝑜x
113 112 3exp AOnLimAxOnyωω𝑜x+𝑜y=AxOn1𝑜A=ω𝑜x
114 113 expdimp AOnLimAxOnyωω𝑜x+𝑜y=AxOn1𝑜A=ω𝑜x
115 114 rexlimdv AOnLimAxOnyωω𝑜x+𝑜y=AxOn1𝑜A=ω𝑜x
116 115 expimpd AOnLimAxOnyωω𝑜x+𝑜y=AxOn1𝑜A=ω𝑜x
117 116 reximdv2 AOnLimAxOnyωω𝑜x+𝑜y=AxOn1𝑜A=ω𝑜x
118 23 117 mpd AOnLimAxOn1𝑜A=ω𝑜x
119 simpr xOn1𝑜A=ω𝑜xA=ω𝑜x
120 eldifi xOn1𝑜xOn
121 15 120 74 sylancr xOn1𝑜ω𝑜xOn
122 121 adantr xOn1𝑜A=ω𝑜xω𝑜xOn
123 119 122 eqeltrd xOn1𝑜A=ω𝑜xAOn
124 limom Limω
125 15 124 pm3.2i ωOnLimω
126 omlimcl2 xOnωOnLimωxLimω𝑜x
127 125 126 mpanl2 xOnxLimω𝑜x
128 100 127 sylbi xOn1𝑜Limω𝑜x
129 128 adantr xOn1𝑜A=ω𝑜xLimω𝑜x
130 limeq A=ω𝑜xLimALimω𝑜x
131 130 adantl xOn1𝑜A=ω𝑜xLimALimω𝑜x
132 129 131 mpbird xOn1𝑜A=ω𝑜xLimA
133 123 132 jca xOn1𝑜A=ω𝑜xAOnLimA
134 133 rexlimiva xOn1𝑜A=ω𝑜xAOnLimA
135 118 134 impbii AOnLimAxOn1𝑜A=ω𝑜x
136 135 orbi2i A=OnAOnLimAA=OnxOn1𝑜A=ω𝑜x
137 8 13 136 3bitr2i LimAA=OnxOn1𝑜A=ω𝑜x