Description: Upper bound on degree of an algebraic number. (Contributed by Stefan O'Rear, 25-Nov-2014) (Proof shortened by AV, 29-Sep-2020)
Ref | Expression | ||
---|---|---|---|
Assertion | dgraaub | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simprl | |
|
2 | eldifsn | |
|
3 | 2 | biimpri | |
4 | 3 | adantr | |
5 | simprr | |
|
6 | fveq1 | |
|
7 | 6 | eqeq1d | |
8 | 7 | rspcev | |
9 | 4 5 8 | syl2anc | |
10 | elqaa | |
|
11 | 1 9 10 | sylanbrc | |
12 | dgraaval | |
|
13 | 11 12 | syl | |
14 | ssrab2 | |
|
15 | nnuz | |
|
16 | 14 15 | sseqtri | |
17 | dgrnznn | |
|
18 | eqid | |
|
19 | 5 18 | jctil | |
20 | fveqeq2 | |
|
21 | fveq1 | |
|
22 | 21 | eqeq1d | |
23 | 20 22 | anbi12d | |
24 | 23 | rspcev | |
25 | 4 19 24 | syl2anc | |
26 | eqeq2 | |
|
27 | 26 | anbi1d | |
28 | 27 | rexbidv | |
29 | 28 | elrab | |
30 | 17 25 29 | sylanbrc | |
31 | infssuzle | |
|
32 | 16 30 31 | sylancr | |
33 | 13 32 | eqbrtrd | |