Metamath Proof Explorer


Theorem dgraaub

Description: Upper bound on degree of an algebraic number. (Contributed by Stefan O'Rear, 25-Nov-2014) (Proof shortened by AV, 29-Sep-2020)

Ref Expression
Assertion dgraaub PPolyP0𝑝APA=0deg𝔸AdegP

Proof

Step Hyp Ref Expression
1 simprl PPolyP0𝑝APA=0A
2 eldifsn PPoly0𝑝PPolyP0𝑝
3 2 biimpri PPolyP0𝑝PPoly0𝑝
4 3 adantr PPolyP0𝑝APA=0PPoly0𝑝
5 simprr PPolyP0𝑝APA=0PA=0
6 fveq1 a=PaA=PA
7 6 eqeq1d a=PaA=0PA=0
8 7 rspcev PPoly0𝑝PA=0aPoly0𝑝aA=0
9 4 5 8 syl2anc PPolyP0𝑝APA=0aPoly0𝑝aA=0
10 elqaa A𝔸AaPoly0𝑝aA=0
11 1 9 10 sylanbrc PPolyP0𝑝APA=0A𝔸
12 dgraaval A𝔸deg𝔸A=supa|bPoly0𝑝degb=abA=0<
13 11 12 syl PPolyP0𝑝APA=0deg𝔸A=supa|bPoly0𝑝degb=abA=0<
14 ssrab2 a|bPoly0𝑝degb=abA=0
15 nnuz =1
16 14 15 sseqtri a|bPoly0𝑝degb=abA=01
17 dgrnznn PPolyP0𝑝APA=0degP
18 eqid degP=degP
19 5 18 jctil PPolyP0𝑝APA=0degP=degPPA=0
20 fveqeq2 b=Pdegb=degPdegP=degP
21 fveq1 b=PbA=PA
22 21 eqeq1d b=PbA=0PA=0
23 20 22 anbi12d b=Pdegb=degPbA=0degP=degPPA=0
24 23 rspcev PPoly0𝑝degP=degPPA=0bPoly0𝑝degb=degPbA=0
25 4 19 24 syl2anc PPolyP0𝑝APA=0bPoly0𝑝degb=degPbA=0
26 eqeq2 a=degPdegb=adegb=degP
27 26 anbi1d a=degPdegb=abA=0degb=degPbA=0
28 27 rexbidv a=degPbPoly0𝑝degb=abA=0bPoly0𝑝degb=degPbA=0
29 28 elrab degPa|bPoly0𝑝degb=abA=0degPbPoly0𝑝degb=degPbA=0
30 17 25 29 sylanbrc PPolyP0𝑝APA=0degPa|bPoly0𝑝degb=abA=0
31 infssuzle a|bPoly0𝑝degb=abA=01degPa|bPoly0𝑝degb=abA=0supa|bPoly0𝑝degb=abA=0<degP
32 16 30 31 sylancr PPolyP0𝑝APA=0supa|bPoly0𝑝degb=abA=0<degP
33 13 32 eqbrtrd PPolyP0𝑝APA=0deg𝔸AdegP