Metamath Proof Explorer


Theorem dia2dimlem7

Description: Lemma for dia2dim . Eliminate ( FP ) =/= P condition. (Contributed by NM, 8-Sep-2014)

Ref Expression
Hypotheses dia2dimlem7.l ˙=K
dia2dimlem7.j ˙=joinK
dia2dimlem7.m ˙=meetK
dia2dimlem7.a A=AtomsK
dia2dimlem7.h H=LHypK
dia2dimlem7.t T=LTrnKW
dia2dimlem7.r R=trLKW
dia2dimlem7.y Y=DVecAKW
dia2dimlem7.s S=LSubSpY
dia2dimlem7.pl ˙=LSSumY
dia2dimlem7.n N=LSpanY
dia2dimlem7.i I=DIsoAKW
dia2dimlem7.q Q=P˙U˙FP˙V
dia2dimlem7.k φKHLWH
dia2dimlem7.u φUAU˙W
dia2dimlem7.v φVAV˙W
dia2dimlem7.p φPA¬P˙W
dia2dimlem7.f φFT
dia2dimlem7.rf φRF˙U˙V
dia2dimlem7.uv φUV
dia2dimlem7.ru φRFU
dia2dimlem7.rv φRFV
Assertion dia2dimlem7 φFIU˙IV

Proof

Step Hyp Ref Expression
1 dia2dimlem7.l ˙=K
2 dia2dimlem7.j ˙=joinK
3 dia2dimlem7.m ˙=meetK
4 dia2dimlem7.a A=AtomsK
5 dia2dimlem7.h H=LHypK
6 dia2dimlem7.t T=LTrnKW
7 dia2dimlem7.r R=trLKW
8 dia2dimlem7.y Y=DVecAKW
9 dia2dimlem7.s S=LSubSpY
10 dia2dimlem7.pl ˙=LSSumY
11 dia2dimlem7.n N=LSpanY
12 dia2dimlem7.i I=DIsoAKW
13 dia2dimlem7.q Q=P˙U˙FP˙V
14 dia2dimlem7.k φKHLWH
15 dia2dimlem7.u φUAU˙W
16 dia2dimlem7.v φVAV˙W
17 dia2dimlem7.p φPA¬P˙W
18 dia2dimlem7.f φFT
19 dia2dimlem7.rf φRF˙U˙V
20 dia2dimlem7.uv φUV
21 dia2dimlem7.ru φRFU
22 dia2dimlem7.rv φRFV
23 eqid BaseK=BaseK
24 23 1 4 5 6 ltrnideq KHLWHFTPA¬P˙WF=IBaseKFP=P
25 14 18 17 24 syl3anc φF=IBaseKFP=P
26 eqid 0Y=0Y
27 23 5 6 8 26 dva0g KHLWH0Y=IBaseK
28 14 27 syl φ0Y=IBaseK
29 5 8 dvalvec KHLWHYLVec
30 lveclmod YLVecYLMod
31 14 29 30 3syl φYLMod
32 15 simpld φUA
33 23 4 atbase UAUBaseK
34 32 33 syl φUBaseK
35 15 simprd φU˙W
36 23 1 5 8 12 9 dialss KHLWHUBaseKU˙WIUS
37 14 34 35 36 syl12anc φIUS
38 16 simpld φVA
39 23 4 atbase VAVBaseK
40 38 39 syl φVBaseK
41 16 simprd φV˙W
42 23 1 5 8 12 9 dialss KHLWHVBaseKV˙WIVS
43 14 40 41 42 syl12anc φIVS
44 9 10 lsmcl YLModIUSIVSIU˙IVS
45 31 37 43 44 syl3anc φIU˙IVS
46 26 9 lss0cl YLModIU˙IVS0YIU˙IV
47 31 45 46 syl2anc φ0YIU˙IV
48 28 47 eqeltrrd φIBaseKIU˙IV
49 eleq1a IBaseKIU˙IVF=IBaseKFIU˙IV
50 48 49 syl φF=IBaseKFIU˙IV
51 25 50 sylbird φFP=PFIU˙IV
52 51 imp φFP=PFIU˙IV
53 14 adantr φFPPKHLWH
54 15 adantr φFPPUAU˙W
55 16 adantr φFPPVAV˙W
56 17 adantr φFPPPA¬P˙W
57 18 anim1i φFPPFTFPP
58 19 adantr φFPPRF˙U˙V
59 20 adantr φFPPUV
60 21 adantr φFPPRFU
61 22 adantr φFPPRFV
62 1 2 3 4 5 6 7 8 9 10 11 12 13 53 54 55 56 57 58 59 60 61 dia2dimlem6 φFPPFIU˙IV
63 52 62 pm2.61dane φFIU˙IV