Description: Lemma for dia2dim . Eliminate ( RF ) =/= U , V conditions. (Contributed by NM, 8-Sep-2014)
Ref | Expression | ||
---|---|---|---|
Hypotheses | dia2dimlem9.l | |
|
dia2dimlem9.j | |
||
dia2dimlem9.m | |
||
dia2dimlem9.a | |
||
dia2dimlem9.h | |
||
dia2dimlem9.t | |
||
dia2dimlem9.r | |
||
dia2dimlem9.y | |
||
dia2dimlem9.s | |
||
dia2dimlem9.pl | |
||
dia2dimlem9.n | |
||
dia2dimlem9.i | |
||
dia2dimlem9.k | |
||
dia2dimlem9.u | |
||
dia2dimlem9.v | |
||
dia2dimlem9.f | |
||
dia2dimlem9.rf | |
||
dia2dimlem9.uv | |
||
Assertion | dia2dimlem9 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dia2dimlem9.l | |
|
2 | dia2dimlem9.j | |
|
3 | dia2dimlem9.m | |
|
4 | dia2dimlem9.a | |
|
5 | dia2dimlem9.h | |
|
6 | dia2dimlem9.t | |
|
7 | dia2dimlem9.r | |
|
8 | dia2dimlem9.y | |
|
9 | dia2dimlem9.s | |
|
10 | dia2dimlem9.pl | |
|
11 | dia2dimlem9.n | |
|
12 | dia2dimlem9.i | |
|
13 | dia2dimlem9.k | |
|
14 | dia2dimlem9.u | |
|
15 | dia2dimlem9.v | |
|
16 | dia2dimlem9.f | |
|
17 | dia2dimlem9.rf | |
|
18 | dia2dimlem9.uv | |
|
19 | 5 8 | dvalvec | |
20 | lveclmod | |
|
21 | 9 | lsssssubg | |
22 | 13 19 20 21 | 4syl | |
23 | 14 | simpld | |
24 | eqid | |
|
25 | 24 4 | atbase | |
26 | 23 25 | syl | |
27 | 14 | simprd | |
28 | 24 1 5 8 12 9 | dialss | |
29 | 13 26 27 28 | syl12anc | |
30 | 22 29 | sseldd | |
31 | 15 | simpld | |
32 | 24 4 | atbase | |
33 | 31 32 | syl | |
34 | 15 | simprd | |
35 | 24 1 5 8 12 9 | dialss | |
36 | 13 33 34 35 | syl12anc | |
37 | 22 36 | sseldd | |
38 | 10 | lsmub1 | |
39 | 30 37 38 | syl2anc | |
40 | 39 | adantr | |
41 | 5 6 7 12 | dia1dimid | |
42 | 13 16 41 | syl2anc | |
43 | 42 | adantr | |
44 | fveq2 | |
|
45 | 44 | adantl | |
46 | 43 45 | eleqtrd | |
47 | 40 46 | sseldd | |
48 | 30 | adantr | |
49 | 37 | adantr | |
50 | 10 | lsmub2 | |
51 | 48 49 50 | syl2anc | |
52 | 42 | adantr | |
53 | fveq2 | |
|
54 | 53 | adantl | |
55 | 52 54 | eleqtrd | |
56 | 51 55 | sseldd | |
57 | 13 | adantr | |
58 | 14 | adantr | |
59 | 15 | adantr | |
60 | 16 | adantr | |
61 | 17 | adantr | |
62 | 18 | adantr | |
63 | simprl | |
|
64 | simprr | |
|
65 | 1 2 3 4 5 6 7 8 9 10 11 12 57 58 59 60 61 62 63 64 | dia2dimlem8 | |
66 | 47 56 65 | pm2.61da2ne | |