Metamath Proof Explorer


Theorem dia2dimlem9

Description: Lemma for dia2dim . Eliminate ( RF ) =/= U , V conditions. (Contributed by NM, 8-Sep-2014)

Ref Expression
Hypotheses dia2dimlem9.l ˙=K
dia2dimlem9.j ˙=joinK
dia2dimlem9.m ˙=meetK
dia2dimlem9.a A=AtomsK
dia2dimlem9.h H=LHypK
dia2dimlem9.t T=LTrnKW
dia2dimlem9.r R=trLKW
dia2dimlem9.y Y=DVecAKW
dia2dimlem9.s S=LSubSpY
dia2dimlem9.pl ˙=LSSumY
dia2dimlem9.n N=LSpanY
dia2dimlem9.i I=DIsoAKW
dia2dimlem9.k φKHLWH
dia2dimlem9.u φUAU˙W
dia2dimlem9.v φVAV˙W
dia2dimlem9.f φFT
dia2dimlem9.rf φRF˙U˙V
dia2dimlem9.uv φUV
Assertion dia2dimlem9 φFIU˙IV

Proof

Step Hyp Ref Expression
1 dia2dimlem9.l ˙=K
2 dia2dimlem9.j ˙=joinK
3 dia2dimlem9.m ˙=meetK
4 dia2dimlem9.a A=AtomsK
5 dia2dimlem9.h H=LHypK
6 dia2dimlem9.t T=LTrnKW
7 dia2dimlem9.r R=trLKW
8 dia2dimlem9.y Y=DVecAKW
9 dia2dimlem9.s S=LSubSpY
10 dia2dimlem9.pl ˙=LSSumY
11 dia2dimlem9.n N=LSpanY
12 dia2dimlem9.i I=DIsoAKW
13 dia2dimlem9.k φKHLWH
14 dia2dimlem9.u φUAU˙W
15 dia2dimlem9.v φVAV˙W
16 dia2dimlem9.f φFT
17 dia2dimlem9.rf φRF˙U˙V
18 dia2dimlem9.uv φUV
19 5 8 dvalvec KHLWHYLVec
20 lveclmod YLVecYLMod
21 9 lsssssubg YLModSSubGrpY
22 13 19 20 21 4syl φSSubGrpY
23 14 simpld φUA
24 eqid BaseK=BaseK
25 24 4 atbase UAUBaseK
26 23 25 syl φUBaseK
27 14 simprd φU˙W
28 24 1 5 8 12 9 dialss KHLWHUBaseKU˙WIUS
29 13 26 27 28 syl12anc φIUS
30 22 29 sseldd φIUSubGrpY
31 15 simpld φVA
32 24 4 atbase VAVBaseK
33 31 32 syl φVBaseK
34 15 simprd φV˙W
35 24 1 5 8 12 9 dialss KHLWHVBaseKV˙WIVS
36 13 33 34 35 syl12anc φIVS
37 22 36 sseldd φIVSubGrpY
38 10 lsmub1 IUSubGrpYIVSubGrpYIUIU˙IV
39 30 37 38 syl2anc φIUIU˙IV
40 39 adantr φRF=UIUIU˙IV
41 5 6 7 12 dia1dimid KHLWHFTFIRF
42 13 16 41 syl2anc φFIRF
43 42 adantr φRF=UFIRF
44 fveq2 RF=UIRF=IU
45 44 adantl φRF=UIRF=IU
46 43 45 eleqtrd φRF=UFIU
47 40 46 sseldd φRF=UFIU˙IV
48 30 adantr φRF=VIUSubGrpY
49 37 adantr φRF=VIVSubGrpY
50 10 lsmub2 IUSubGrpYIVSubGrpYIVIU˙IV
51 48 49 50 syl2anc φRF=VIVIU˙IV
52 42 adantr φRF=VFIRF
53 fveq2 RF=VIRF=IV
54 53 adantl φRF=VIRF=IV
55 52 54 eleqtrd φRF=VFIV
56 51 55 sseldd φRF=VFIU˙IV
57 13 adantr φRFURFVKHLWH
58 14 adantr φRFURFVUAU˙W
59 15 adantr φRFURFVVAV˙W
60 16 adantr φRFURFVFT
61 17 adantr φRFURFVRF˙U˙V
62 18 adantr φRFURFVUV
63 simprl φRFURFVRFU
64 simprr φRFURFVRFV
65 1 2 3 4 5 6 7 8 9 10 11 12 57 58 59 60 61 62 63 64 dia2dimlem8 φRFURFVFIU˙IV
66 47 56 65 pm2.61da2ne φFIU˙IV