Metamath Proof Explorer


Theorem dif1enlem

Description: Lemma for rexdif1en and dif1en . (Contributed by BTernaryTau, 18-Aug-2024) Generalize to all ordinals and add a sethood requirement to avoid ax-un . (Revised by BTernaryTau, 5-Jan-2025)

Ref Expression
Assertion dif1enlem FVAWMOnF:A1-1 ontosucMAF-1MM

Proof

Step Hyp Ref Expression
1 sucidg MOnMsucM
2 dff1o3 F:A1-1 ontosucMF:AontosucMFunF-1
3 2 simprbi F:A1-1 ontosucMFunF-1
4 3 adantr F:A1-1 ontosucMMsucMFunF-1
5 f1ofo F:A1-1 ontosucMF:AontosucM
6 f1ofn F:A1-1 ontosucMFFnA
7 fnresdm FFnAFA=F
8 foeq1 FA=FFA:AontosucMF:AontosucM
9 6 7 8 3syl F:A1-1 ontosucMFA:AontosucMF:AontosucM
10 5 9 mpbird F:A1-1 ontosucMFA:AontosucM
11 10 adantr F:A1-1 ontosucMMsucMFA:AontosucM
12 6 adantr F:A1-1 ontosucMMsucMFFnA
13 f1ocnvdm F:A1-1 ontosucMMsucMF-1MA
14 f1ocnvfv2 F:A1-1 ontosucMMsucMFF-1M=M
15 snidg MsucMMM
16 15 adantl F:A1-1 ontosucMMsucMMM
17 14 16 eqeltrd F:A1-1 ontosucMMsucMFF-1MM
18 fressnfv FFnAF-1MAFF-1M:F-1MMFF-1MM
19 18 biimp3ar FFnAF-1MAFF-1MMFF-1M:F-1MM
20 12 13 17 19 syl3anc F:A1-1 ontosucMMsucMFF-1M:F-1MM
21 disjsn AF-1M=¬F-1MA
22 21 con2bii F-1MA¬AF-1M=
23 13 22 sylib F:A1-1 ontosucMMsucM¬AF-1M=
24 fnresdisj FFnAAF-1M=FF-1M=
25 6 24 syl F:A1-1 ontosucMAF-1M=FF-1M=
26 25 adantr F:A1-1 ontosucMMsucMAF-1M=FF-1M=
27 23 26 mtbid F:A1-1 ontosucMMsucM¬FF-1M=
28 27 neqned F:A1-1 ontosucMMsucMFF-1M
29 foconst FF-1M:F-1MMFF-1MFF-1M:F-1MontoM
30 20 28 29 syl2anc F:A1-1 ontosucMMsucMFF-1M:F-1MontoM
31 resdif FunF-1FA:AontosucMFF-1M:F-1MontoMFAF-1M:AF-1M1-1 ontosucMM
32 4 11 30 31 syl3anc F:A1-1 ontosucMMsucMFAF-1M:AF-1M1-1 ontosucMM
33 1 32 sylan2 F:A1-1 ontosucMMOnFAF-1M:AF-1M1-1 ontosucMM
34 eloni MOnOrdM
35 orddif OrdMM=sucMM
36 34 35 syl MOnM=sucMM
37 36 f1oeq3d MOnFAF-1M:AF-1M1-1 ontoMFAF-1M:AF-1M1-1 ontosucMM
38 37 adantl F:A1-1 ontosucMMOnFAF-1M:AF-1M1-1 ontoMFAF-1M:AF-1M1-1 ontosucMM
39 33 38 mpbird F:A1-1 ontosucMMOnFAF-1M:AF-1M1-1 ontoM
40 39 ancoms MOnF:A1-1 ontosucMFAF-1M:AF-1M1-1 ontoM
41 40 3ad2antl3 FVAWMOnF:A1-1 ontosucMFAF-1M:AF-1M1-1 ontoM
42 difexg AWAF-1MV
43 resexg FVFAF-1MV
44 f1oen4g FAF-1MVAF-1MVMOnFAF-1M:AF-1M1-1 ontoMAF-1MM
45 43 44 syl3anl1 FVAF-1MVMOnFAF-1M:AF-1M1-1 ontoMAF-1MM
46 42 45 syl3anl2 FVAWMOnFAF-1M:AF-1M1-1 ontoMAF-1MM
47 41 46 syldan FVAWMOnF:A1-1 ontosucMAF-1MM