Description: Lemma for rexdif1en and dif1en . (Contributed by BTernaryTau, 18-Aug-2024) Generalize to all ordinals and add a sethood requirement to avoid ax-un . (Revised by BTernaryTau, 5-Jan-2025)
Ref | Expression | ||
---|---|---|---|
Assertion | dif1enlem | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sucidg | |
|
2 | dff1o3 | |
|
3 | 2 | simprbi | |
4 | 3 | adantr | |
5 | f1ofo | |
|
6 | f1ofn | |
|
7 | fnresdm | |
|
8 | foeq1 | |
|
9 | 6 7 8 | 3syl | |
10 | 5 9 | mpbird | |
11 | 10 | adantr | |
12 | 6 | adantr | |
13 | f1ocnvdm | |
|
14 | f1ocnvfv2 | |
|
15 | snidg | |
|
16 | 15 | adantl | |
17 | 14 16 | eqeltrd | |
18 | fressnfv | |
|
19 | 18 | biimp3ar | |
20 | 12 13 17 19 | syl3anc | |
21 | disjsn | |
|
22 | 21 | con2bii | |
23 | 13 22 | sylib | |
24 | fnresdisj | |
|
25 | 6 24 | syl | |
26 | 25 | adantr | |
27 | 23 26 | mtbid | |
28 | 27 | neqned | |
29 | foconst | |
|
30 | 20 28 29 | syl2anc | |
31 | resdif | |
|
32 | 4 11 30 31 | syl3anc | |
33 | 1 32 | sylan2 | |
34 | eloni | |
|
35 | orddif | |
|
36 | 34 35 | syl | |
37 | 36 | f1oeq3d | |
38 | 37 | adantl | |
39 | 33 38 | mpbird | |
40 | 39 | ancoms | |
41 | 40 | 3ad2antl3 | |
42 | difexg | |
|
43 | resexg | |
|
44 | f1oen4g | |
|
45 | 43 44 | syl3anl1 | |
46 | 42 45 | syl3anl2 | |
47 | 41 46 | syldan | |