Description: The discrete space ~P X is locally A if and only if every singleton space has property A . (Contributed by Mario Carneiro, 20-Mar-2015)
Ref | Expression | ||
---|---|---|---|
Assertion | dislly | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simplr | |
|
2 | simpr | |
|
3 | vex | |
|
4 | 3 | snelpw | |
5 | 2 4 | sylib | |
6 | vsnid | |
|
7 | 6 | a1i | |
8 | llyi | |
|
9 | 1 5 7 8 | syl3anc | |
10 | simpr1 | |
|
11 | simpr2 | |
|
12 | 11 | snssd | |
13 | 10 12 | eqssd | |
14 | 13 | oveq2d | |
15 | simplll | |
|
16 | simplr | |
|
17 | 16 | snssd | |
18 | restdis | |
|
19 | 15 17 18 | syl2anc | |
20 | 14 19 | eqtrd | |
21 | simpr3 | |
|
22 | 20 21 | eqeltrrd | |
23 | 22 | ex | |
24 | 23 | rexlimdvw | |
25 | 9 24 | mpd | |
26 | 25 | ralrimiva | |
27 | distop | |
|
28 | 27 | adantr | |
29 | elpwi | |
|
30 | 29 | adantl | |
31 | ssralv | |
|
32 | 30 31 | syl | |
33 | simprl | |
|
34 | 33 | snssd | |
35 | 30 | adantr | |
36 | 34 35 | sstrd | |
37 | vsnex | |
|
38 | 37 | elpw | |
39 | 36 38 | sylibr | |
40 | 37 | elpw | |
41 | 34 40 | sylibr | |
42 | 39 41 | elind | |
43 | snidg | |
|
44 | 43 | ad2antrl | |
45 | simpll | |
|
46 | 45 36 18 | syl2anc | |
47 | simprr | |
|
48 | 46 47 | eqeltrd | |
49 | eleq2 | |
|
50 | oveq2 | |
|
51 | 50 | eleq1d | |
52 | 49 51 | anbi12d | |
53 | 52 | rspcev | |
54 | 42 44 48 53 | syl12anc | |
55 | 54 | expr | |
56 | 55 | ralimdva | |
57 | 32 56 | syld | |
58 | 57 | imp | |
59 | 58 | an32s | |
60 | 59 | ralrimiva | |
61 | islly | |
|
62 | 28 60 61 | sylanbrc | |
63 | 26 62 | impbida | |