Metamath Proof Explorer


Theorem dislly

Description: The discrete space ~P X is locally A if and only if every singleton space has property A . (Contributed by Mario Carneiro, 20-Mar-2015)

Ref Expression
Assertion dislly XV𝒫XLocally A xX𝒫xA

Proof

Step Hyp Ref Expression
1 simplr XV𝒫XLocally A xX 𝒫XLocally A
2 simpr XV𝒫XLocally A xX xX
3 vex xV
4 3 snelpw xXx𝒫X
5 2 4 sylib XV𝒫XLocally A xX x𝒫X
6 vsnid xx
7 6 a1i XV𝒫XLocally A xX xx
8 llyi 𝒫XLocally A x𝒫X xx y𝒫Xyxxy𝒫X𝑡yA
9 1 5 7 8 syl3anc XV𝒫XLocally A xX y𝒫Xyxxy𝒫X𝑡yA
10 simpr1 XV𝒫XLocally A xX yxxy𝒫X𝑡yA yx
11 simpr2 XV𝒫XLocally A xX yxxy𝒫X𝑡yA xy
12 11 snssd XV𝒫XLocally A xX yxxy𝒫X𝑡yA xy
13 10 12 eqssd XV𝒫XLocally A xX yxxy𝒫X𝑡yA y=x
14 13 oveq2d XV𝒫XLocally A xX yxxy𝒫X𝑡yA 𝒫X𝑡y=𝒫X𝑡x
15 simplll XV𝒫XLocally A xX yxxy𝒫X𝑡yA XV
16 simplr XV𝒫XLocally A xX yxxy𝒫X𝑡yA xX
17 16 snssd XV𝒫XLocally A xX yxxy𝒫X𝑡yA xX
18 restdis XVxX𝒫X𝑡x=𝒫x
19 15 17 18 syl2anc XV𝒫XLocally A xX yxxy𝒫X𝑡yA 𝒫X𝑡x=𝒫x
20 14 19 eqtrd XV𝒫XLocally A xX yxxy𝒫X𝑡yA 𝒫X𝑡y=𝒫x
21 simpr3 XV𝒫XLocally A xX yxxy𝒫X𝑡yA 𝒫X𝑡yA
22 20 21 eqeltrrd XV𝒫XLocally A xX yxxy𝒫X𝑡yA 𝒫xA
23 22 ex XV𝒫XLocally A xX yxxy𝒫X𝑡yA𝒫xA
24 23 rexlimdvw XV𝒫XLocally A xX y𝒫Xyxxy𝒫X𝑡yA𝒫xA
25 9 24 mpd XV𝒫XLocally A xX 𝒫xA
26 25 ralrimiva XV𝒫XLocally A xX𝒫xA
27 distop XV𝒫XTop
28 27 adantr XVxX𝒫xA𝒫XTop
29 elpwi y𝒫XyX
30 29 adantl XVy𝒫XyX
31 ssralv yXxX𝒫xAxy𝒫xA
32 30 31 syl XVy𝒫XxX𝒫xAxy𝒫xA
33 simprl XVy𝒫Xxy𝒫xAxy
34 33 snssd XVy𝒫Xxy𝒫xAxy
35 30 adantr XVy𝒫Xxy𝒫xAyX
36 34 35 sstrd XVy𝒫Xxy𝒫xAxX
37 vsnex xV
38 37 elpw x𝒫XxX
39 36 38 sylibr XVy𝒫Xxy𝒫xAx𝒫X
40 37 elpw x𝒫yxy
41 34 40 sylibr XVy𝒫Xxy𝒫xAx𝒫y
42 39 41 elind XVy𝒫Xxy𝒫xAx𝒫X𝒫y
43 snidg xyxx
44 43 ad2antrl XVy𝒫Xxy𝒫xAxx
45 simpll XVy𝒫Xxy𝒫xAXV
46 45 36 18 syl2anc XVy𝒫Xxy𝒫xA𝒫X𝑡x=𝒫x
47 simprr XVy𝒫Xxy𝒫xA𝒫xA
48 46 47 eqeltrd XVy𝒫Xxy𝒫xA𝒫X𝑡xA
49 eleq2 u=xxuxx
50 oveq2 u=x𝒫X𝑡u=𝒫X𝑡x
51 50 eleq1d u=x𝒫X𝑡uA𝒫X𝑡xA
52 49 51 anbi12d u=xxu𝒫X𝑡uAxx𝒫X𝑡xA
53 52 rspcev x𝒫X𝒫yxx𝒫X𝑡xAu𝒫X𝒫yxu𝒫X𝑡uA
54 42 44 48 53 syl12anc XVy𝒫Xxy𝒫xAu𝒫X𝒫yxu𝒫X𝑡uA
55 54 expr XVy𝒫Xxy𝒫xAu𝒫X𝒫yxu𝒫X𝑡uA
56 55 ralimdva XVy𝒫Xxy𝒫xAxyu𝒫X𝒫yxu𝒫X𝑡uA
57 32 56 syld XVy𝒫XxX𝒫xAxyu𝒫X𝒫yxu𝒫X𝑡uA
58 57 imp XVy𝒫XxX𝒫xAxyu𝒫X𝒫yxu𝒫X𝑡uA
59 58 an32s XVxX𝒫xAy𝒫Xxyu𝒫X𝒫yxu𝒫X𝑡uA
60 59 ralrimiva XVxX𝒫xAy𝒫Xxyu𝒫X𝒫yxu𝒫X𝑡uA
61 islly 𝒫XLocally A 𝒫XTopy𝒫Xxyu𝒫X𝒫yxu𝒫X𝑡uA
62 28 60 61 sylanbrc XVxX𝒫xA𝒫XLocally A
63 26 62 impbida XV𝒫XLocally A xX𝒫xA