Metamath Proof Explorer


Theorem divgcdcoprmex

Description: Integers divided by gcd are coprime (see ProofWiki "Integers Divided by GCD are Coprime", 11-Jul-2021, https://proofwiki.org/wiki/Integers_Divided_by_GCD_are_Coprime ): Any pair of integers, not both zero, can be reduced to a pair of coprime ones by dividing them by their gcd. (Contributed by AV, 12-Jul-2021)

Ref Expression
Assertion divgcdcoprmex ABB0M=AgcdBabA=MaB=Mbagcdb=1

Proof

Step Hyp Ref Expression
1 simpl BB0B
2 1 anim2i ABB0AB
3 zeqzmulgcd ABaA=aAgcdB
4 2 3 syl ABB0aA=aAgcdB
5 4 3adant3 ABB0M=AgcdBaA=aAgcdB
6 zeqzmulgcd BAbB=bBgcdA
7 6 adantlr BB0AbB=bBgcdA
8 7 ancoms ABB0bB=bBgcdA
9 8 3adant3 ABB0M=AgcdBbB=bBgcdA
10 reeanv abA=aAgcdBB=bBgcdAaA=aAgcdBbB=bBgcdA
11 zcn aa
12 11 adantl ABB0M=AgcdBaa
13 gcdcl ABAgcdB0
14 2 13 syl ABB0AgcdB0
15 14 nn0cnd ABB0AgcdB
16 15 3adant3 ABB0M=AgcdBAgcdB
17 16 adantr ABB0M=AgcdBaAgcdB
18 12 17 mulcomd ABB0M=AgcdBaaAgcdB=AgcdBa
19 simp3 ABB0M=AgcdBM=AgcdB
20 19 eqcomd ABB0M=AgcdBAgcdB=M
21 20 oveq1d ABB0M=AgcdBAgcdBa=Ma
22 21 adantr ABB0M=AgcdBaAgcdBa=Ma
23 18 22 eqtrd ABB0M=AgcdBaaAgcdB=Ma
24 23 ad2antrr ABB0M=AgcdBabA=aAgcdBB=bBgcdAaAgcdB=Ma
25 eqeq1 A=aAgcdBA=MaaAgcdB=Ma
26 25 adantr A=aAgcdBB=bBgcdAA=MaaAgcdB=Ma
27 26 adantl ABB0M=AgcdBabA=aAgcdBB=bBgcdAA=MaaAgcdB=Ma
28 24 27 mpbird ABB0M=AgcdBabA=aAgcdBB=bBgcdAA=Ma
29 simpr A=aAgcdBB=bBgcdAB=bBgcdA
30 2 ancomd ABB0BA
31 gcdcom BABgcdA=AgcdB
32 30 31 syl ABB0BgcdA=AgcdB
33 32 3adant3 ABB0M=AgcdBBgcdA=AgcdB
34 33 oveq2d ABB0M=AgcdBbBgcdA=bAgcdB
35 34 adantr ABB0M=AgcdBbbBgcdA=bAgcdB
36 zcn bb
37 36 adantl ABB0M=AgcdBbb
38 14 3adant3 ABB0M=AgcdBAgcdB0
39 38 adantr ABB0M=AgcdBbAgcdB0
40 39 nn0cnd ABB0M=AgcdBbAgcdB
41 37 40 mulcomd ABB0M=AgcdBbbAgcdB=AgcdBb
42 20 adantr ABB0M=AgcdBbAgcdB=M
43 42 oveq1d ABB0M=AgcdBbAgcdBb=Mb
44 35 41 43 3eqtrd ABB0M=AgcdBbbBgcdA=Mb
45 44 adantlr ABB0M=AgcdBabbBgcdA=Mb
46 29 45 sylan9eqr ABB0M=AgcdBabA=aAgcdBB=bBgcdAB=Mb
47 zcn AA
48 47 3ad2ant1 ABB0M=AgcdBA
49 48 ad2antrr ABB0M=AgcdBabA
50 12 adantr ABB0M=AgcdBaba
51 simp1 ABB0M=AgcdBA
52 1 3ad2ant2 ABB0M=AgcdBB
53 51 52 gcdcld ABB0M=AgcdBAgcdB0
54 53 nn0cnd ABB0M=AgcdBAgcdB
55 54 ad2antrr ABB0M=AgcdBabAgcdB
56 gcdeq0 ABAgcdB=0A=0B=0
57 simpr A=0B=0B=0
58 56 57 syl6bi ABAgcdB=0B=0
59 58 necon3d ABB0AgcdB0
60 59 impr ABB0AgcdB0
61 60 3adant3 ABB0M=AgcdBAgcdB0
62 61 ad2antrr ABB0M=AgcdBabAgcdB0
63 49 50 55 62 divmul3d ABB0M=AgcdBabAAgcdB=aA=aAgcdB
64 63 bicomd ABB0M=AgcdBabA=aAgcdBAAgcdB=a
65 zcn BB
66 65 adantr BB0B
67 66 3ad2ant2 ABB0M=AgcdBB
68 67 ad2antrr ABB0M=AgcdBabB
69 36 adantl ABB0M=AgcdBabb
70 68 69 55 62 divmul3d ABB0M=AgcdBabBAgcdB=bB=bAgcdB
71 2 3adant3 ABB0M=AgcdBAB
72 gcdcom ABAgcdB=BgcdA
73 71 72 syl ABB0M=AgcdBAgcdB=BgcdA
74 73 ad2antrr ABB0M=AgcdBabAgcdB=BgcdA
75 74 oveq2d ABB0M=AgcdBabbAgcdB=bBgcdA
76 75 eqeq2d ABB0M=AgcdBabB=bAgcdBB=bBgcdA
77 70 76 bitr2d ABB0M=AgcdBabB=bBgcdABAgcdB=b
78 64 77 anbi12d ABB0M=AgcdBabA=aAgcdBB=bBgcdAAAgcdB=aBAgcdB=b
79 3anass ABB0ABB0
80 79 biimpri ABB0ABB0
81 80 3adant3 ABB0M=AgcdBABB0
82 divgcdcoprm0 ABB0AAgcdBgcdBAgcdB=1
83 81 82 syl ABB0M=AgcdBAAgcdBgcdBAgcdB=1
84 oveq12 AAgcdB=aBAgcdB=bAAgcdBgcdBAgcdB=agcdb
85 84 eqeq1d AAgcdB=aBAgcdB=bAAgcdBgcdBAgcdB=1agcdb=1
86 83 85 syl5ibcom ABB0M=AgcdBAAgcdB=aBAgcdB=bagcdb=1
87 86 ad2antrr ABB0M=AgcdBabAAgcdB=aBAgcdB=bagcdb=1
88 78 87 sylbid ABB0M=AgcdBabA=aAgcdBB=bBgcdAagcdb=1
89 88 imp ABB0M=AgcdBabA=aAgcdBB=bBgcdAagcdb=1
90 28 46 89 3jca ABB0M=AgcdBabA=aAgcdBB=bBgcdAA=MaB=Mbagcdb=1
91 90 ex ABB0M=AgcdBabA=aAgcdBB=bBgcdAA=MaB=Mbagcdb=1
92 91 reximdva ABB0M=AgcdBabA=aAgcdBB=bBgcdAbA=MaB=Mbagcdb=1
93 92 reximdva ABB0M=AgcdBabA=aAgcdBB=bBgcdAabA=MaB=Mbagcdb=1
94 10 93 biimtrrid ABB0M=AgcdBaA=aAgcdBbB=bBgcdAabA=MaB=Mbagcdb=1
95 5 9 94 mp2and ABB0M=AgcdBabA=MaB=Mbagcdb=1