Metamath Proof Explorer


Theorem divrngidl

Description: The only ideals in a division ring are the zero ideal and the unit ideal. (Contributed by Jeff Madsen, 10-Jun-2010)

Ref Expression
Hypotheses divrngidl.1 G = 1 st R
divrngidl.2 H = 2 nd R
divrngidl.3 X = ran G
divrngidl.4 Z = GId G
Assertion divrngidl R DivRingOps Idl R = Z X

Proof

Step Hyp Ref Expression
1 divrngidl.1 G = 1 st R
2 divrngidl.2 H = 2 nd R
3 divrngidl.3 X = ran G
4 divrngidl.4 Z = GId G
5 eqid GId H = GId H
6 1 2 4 3 5 isdrngo2 R DivRingOps R RingOps GId H Z x X Z y X Z y H x = GId H
7 1 4 idl0cl R RingOps i Idl R Z i
8 7 adantr R RingOps i Idl R x X Z y X Z y H x = GId H Z i
9 4 fvexi Z V
10 9 snss Z i Z i
11 necom i Z Z i
12 pssdifn0 Z i Z i i Z
13 n0 i Z z z i Z
14 12 13 sylib Z i Z i z z i Z
15 10 11 14 syl2anb Z i i Z z z i Z
16 1 3 idlss R RingOps i Idl R i X
17 ssdif i X i Z X Z
18 17 sselda i X z i Z z X Z
19 16 18 sylan R RingOps i Idl R z i Z z X Z
20 oveq2 x = z y H x = y H z
21 20 eqeq1d x = z y H x = GId H y H z = GId H
22 21 rexbidv x = z y X Z y H x = GId H y X Z y H z = GId H
23 22 rspcva z X Z x X Z y X Z y H x = GId H y X Z y H z = GId H
24 19 23 sylan R RingOps i Idl R z i Z x X Z y X Z y H x = GId H y X Z y H z = GId H
25 eldifi z i Z z i
26 eldifi y X Z y X
27 25 26 anim12i z i Z y X Z z i y X
28 1 2 3 idllmulcl R RingOps i Idl R z i y X y H z i
29 1 2 3 5 1idl R RingOps i Idl R GId H i i = X
30 29 biimpd R RingOps i Idl R GId H i i = X
31 30 adantr R RingOps i Idl R z i y X GId H i i = X
32 eleq1 y H z = GId H y H z i GId H i
33 32 imbi1d y H z = GId H y H z i i = X GId H i i = X
34 31 33 syl5ibrcom R RingOps i Idl R z i y X y H z = GId H y H z i i = X
35 28 34 mpid R RingOps i Idl R z i y X y H z = GId H i = X
36 27 35 sylan2 R RingOps i Idl R z i Z y X Z y H z = GId H i = X
37 36 anassrs R RingOps i Idl R z i Z y X Z y H z = GId H i = X
38 37 rexlimdva R RingOps i Idl R z i Z y X Z y H z = GId H i = X
39 38 imp R RingOps i Idl R z i Z y X Z y H z = GId H i = X
40 24 39 syldan R RingOps i Idl R z i Z x X Z y X Z y H x = GId H i = X
41 40 an32s R RingOps i Idl R x X Z y X Z y H x = GId H z i Z i = X
42 41 ex R RingOps i Idl R x X Z y X Z y H x = GId H z i Z i = X
43 42 exlimdv R RingOps i Idl R x X Z y X Z y H x = GId H z z i Z i = X
44 15 43 syl5 R RingOps i Idl R x X Z y X Z y H x = GId H Z i i Z i = X
45 8 44 mpand R RingOps i Idl R x X Z y X Z y H x = GId H i Z i = X
46 45 an32s R RingOps x X Z y X Z y H x = GId H i Idl R i Z i = X
47 neor i = Z i = X i Z i = X
48 46 47 sylibr R RingOps x X Z y X Z y H x = GId H i Idl R i = Z i = X
49 48 ex R RingOps x X Z y X Z y H x = GId H i Idl R i = Z i = X
50 1 4 0idl R RingOps Z Idl R
51 eleq1 i = Z i Idl R Z Idl R
52 50 51 syl5ibrcom R RingOps i = Z i Idl R
53 1 3 rngoidl R RingOps X Idl R
54 eleq1 i = X i Idl R X Idl R
55 53 54 syl5ibrcom R RingOps i = X i Idl R
56 52 55 jaod R RingOps i = Z i = X i Idl R
57 56 adantr R RingOps x X Z y X Z y H x = GId H i = Z i = X i Idl R
58 49 57 impbid R RingOps x X Z y X Z y H x = GId H i Idl R i = Z i = X
59 vex i V
60 59 elpr i Z X i = Z i = X
61 58 60 bitr4di R RingOps x X Z y X Z y H x = GId H i Idl R i Z X
62 61 eqrdv R RingOps x X Z y X Z y H x = GId H Idl R = Z X
63 62 adantrl R RingOps GId H Z x X Z y X Z y H x = GId H Idl R = Z X
64 6 63 sylbi R DivRingOps Idl R = Z X