Metamath Proof Explorer


Theorem divrngidl

Description: The only ideals in a division ring are the zero ideal and the unit ideal. (Contributed by Jeff Madsen, 10-Jun-2010)

Ref Expression
Hypotheses divrngidl.1 G=1stR
divrngidl.2 H=2ndR
divrngidl.3 X=ranG
divrngidl.4 Z=GIdG
Assertion divrngidl RDivRingOpsIdlR=ZX

Proof

Step Hyp Ref Expression
1 divrngidl.1 G=1stR
2 divrngidl.2 H=2ndR
3 divrngidl.3 X=ranG
4 divrngidl.4 Z=GIdG
5 eqid GIdH=GIdH
6 1 2 4 3 5 isdrngo2 RDivRingOpsRRingOpsGIdHZxXZyXZyHx=GIdH
7 1 4 idl0cl RRingOpsiIdlRZi
8 7 adantr RRingOpsiIdlRxXZyXZyHx=GIdHZi
9 4 fvexi ZV
10 9 snss ZiZi
11 necom iZZi
12 pssdifn0 ZiZiiZ
13 n0 iZzziZ
14 12 13 sylib ZiZizziZ
15 10 11 14 syl2anb ZiiZzziZ
16 1 3 idlss RRingOpsiIdlRiX
17 ssdif iXiZXZ
18 17 sselda iXziZzXZ
19 16 18 sylan RRingOpsiIdlRziZzXZ
20 oveq2 x=zyHx=yHz
21 20 eqeq1d x=zyHx=GIdHyHz=GIdH
22 21 rexbidv x=zyXZyHx=GIdHyXZyHz=GIdH
23 22 rspcva zXZxXZyXZyHx=GIdHyXZyHz=GIdH
24 19 23 sylan RRingOpsiIdlRziZxXZyXZyHx=GIdHyXZyHz=GIdH
25 eldifi ziZzi
26 eldifi yXZyX
27 25 26 anim12i ziZyXZziyX
28 1 2 3 idllmulcl RRingOpsiIdlRziyXyHzi
29 1 2 3 5 1idl RRingOpsiIdlRGIdHii=X
30 29 biimpd RRingOpsiIdlRGIdHii=X
31 30 adantr RRingOpsiIdlRziyXGIdHii=X
32 eleq1 yHz=GIdHyHziGIdHi
33 32 imbi1d yHz=GIdHyHzii=XGIdHii=X
34 31 33 syl5ibrcom RRingOpsiIdlRziyXyHz=GIdHyHzii=X
35 28 34 mpid RRingOpsiIdlRziyXyHz=GIdHi=X
36 27 35 sylan2 RRingOpsiIdlRziZyXZyHz=GIdHi=X
37 36 anassrs RRingOpsiIdlRziZyXZyHz=GIdHi=X
38 37 rexlimdva RRingOpsiIdlRziZyXZyHz=GIdHi=X
39 38 imp RRingOpsiIdlRziZyXZyHz=GIdHi=X
40 24 39 syldan RRingOpsiIdlRziZxXZyXZyHx=GIdHi=X
41 40 an32s RRingOpsiIdlRxXZyXZyHx=GIdHziZi=X
42 41 ex RRingOpsiIdlRxXZyXZyHx=GIdHziZi=X
43 42 exlimdv RRingOpsiIdlRxXZyXZyHx=GIdHzziZi=X
44 15 43 syl5 RRingOpsiIdlRxXZyXZyHx=GIdHZiiZi=X
45 8 44 mpand RRingOpsiIdlRxXZyXZyHx=GIdHiZi=X
46 45 an32s RRingOpsxXZyXZyHx=GIdHiIdlRiZi=X
47 neor i=Zi=XiZi=X
48 46 47 sylibr RRingOpsxXZyXZyHx=GIdHiIdlRi=Zi=X
49 48 ex RRingOpsxXZyXZyHx=GIdHiIdlRi=Zi=X
50 1 4 0idl RRingOpsZIdlR
51 eleq1 i=ZiIdlRZIdlR
52 50 51 syl5ibrcom RRingOpsi=ZiIdlR
53 1 3 rngoidl RRingOpsXIdlR
54 eleq1 i=XiIdlRXIdlR
55 53 54 syl5ibrcom RRingOpsi=XiIdlR
56 52 55 jaod RRingOpsi=Zi=XiIdlR
57 56 adantr RRingOpsxXZyXZyHx=GIdHi=Zi=XiIdlR
58 49 57 impbid RRingOpsxXZyXZyHx=GIdHiIdlRi=Zi=X
59 vex iV
60 59 elpr iZXi=Zi=X
61 58 60 bitr4di RRingOpsxXZyXZyHx=GIdHiIdlRiZX
62 61 eqrdv RRingOpsxXZyXZyHx=GIdHIdlR=ZX
63 62 adantrl RRingOpsGIdHZxXZyXZyHx=GIdHIdlR=ZX
64 6 63 sylbi RDivRingOpsIdlR=ZX