Description: The only ideals in a division ring are the zero ideal and the unit ideal. (Contributed by Jeff Madsen, 10-Jun-2010)
Ref | Expression | ||
---|---|---|---|
Hypotheses | divrngidl.1 | |
|
divrngidl.2 | |
||
divrngidl.3 | |
||
divrngidl.4 | |
||
Assertion | divrngidl | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | divrngidl.1 | |
|
2 | divrngidl.2 | |
|
3 | divrngidl.3 | |
|
4 | divrngidl.4 | |
|
5 | eqid | |
|
6 | 1 2 4 3 5 | isdrngo2 | |
7 | 1 4 | idl0cl | |
8 | 7 | adantr | |
9 | 4 | fvexi | |
10 | 9 | snss | |
11 | necom | |
|
12 | pssdifn0 | |
|
13 | n0 | |
|
14 | 12 13 | sylib | |
15 | 10 11 14 | syl2anb | |
16 | 1 3 | idlss | |
17 | ssdif | |
|
18 | 17 | sselda | |
19 | 16 18 | sylan | |
20 | oveq2 | |
|
21 | 20 | eqeq1d | |
22 | 21 | rexbidv | |
23 | 22 | rspcva | |
24 | 19 23 | sylan | |
25 | eldifi | |
|
26 | eldifi | |
|
27 | 25 26 | anim12i | |
28 | 1 2 3 | idllmulcl | |
29 | 1 2 3 5 | 1idl | |
30 | 29 | biimpd | |
31 | 30 | adantr | |
32 | eleq1 | |
|
33 | 32 | imbi1d | |
34 | 31 33 | syl5ibrcom | |
35 | 28 34 | mpid | |
36 | 27 35 | sylan2 | |
37 | 36 | anassrs | |
38 | 37 | rexlimdva | |
39 | 38 | imp | |
40 | 24 39 | syldan | |
41 | 40 | an32s | |
42 | 41 | ex | |
43 | 42 | exlimdv | |
44 | 15 43 | syl5 | |
45 | 8 44 | mpand | |
46 | 45 | an32s | |
47 | neor | |
|
48 | 46 47 | sylibr | |
49 | 48 | ex | |
50 | 1 4 | 0idl | |
51 | eleq1 | |
|
52 | 50 51 | syl5ibrcom | |
53 | 1 3 | rngoidl | |
54 | eleq1 | |
|
55 | 53 54 | syl5ibrcom | |
56 | 52 55 | jaod | |
57 | 56 | adantr | |
58 | 49 57 | impbid | |
59 | vex | |
|
60 | 59 | elpr | |
61 | 58 60 | bitr4di | |
62 | 61 | eqrdv | |
63 | 62 | adantrl | |
64 | 6 63 | sylbi | |