Metamath Proof Explorer


Theorem dprd2d2

Description: The direct product of a collection of direct products. (Contributed by Mario Carneiro, 26-Apr-2016)

Ref Expression
Hypotheses dprd2d2.1 φiIjJSSubGrpG
dprd2d2.2 φiIGdomDProdjJS
dprd2d2.3 φGdomDProdiIGDProdjJS
Assertion dprd2d2 φGdomDProdiI,jJSGDProdiI,jJS=GDProdiIGDProdjJS

Proof

Step Hyp Ref Expression
1 dprd2d2.1 φiIjJSSubGrpG
2 dprd2d2.2 φiIGdomDProdjJS
3 dprd2d2.3 φGdomDProdiIGDProdjJS
4 relxp Reli×J
5 4 rgenw iIReli×J
6 reliun ReliIi×JiIReli×J
7 5 6 mpbir ReliIi×J
8 7 a1i φReliIi×J
9 1 ralrimivva φiIjJSSubGrpG
10 eqid iI,jJS=iI,jJS
11 10 fmpox iIjJSSubGrpGiI,jJS:iIi×JSubGrpG
12 9 11 sylib φiI,jJS:iIi×JSubGrpG
13 dmiun domiIi×J=iIdomi×J
14 dmxpss domi×Ji
15 simpr φiIiI
16 15 snssd φiIiI
17 14 16 sstrid φiIdomi×JI
18 17 ralrimiva φiIdomi×JI
19 iunss iIdomi×JIiIdomi×JI
20 18 19 sylibr φiIdomi×JI
21 13 20 eqsstrid φdomiIi×JI
22 simprl φiIjJiI
23 simprr φiIjJjJ
24 10 ovmpt4g iIjJSSubGrpGiiI,jJSj=S
25 22 23 1 24 syl3anc φiIjJiiI,jJSj=S
26 25 anassrs φiIjJiiI,jJSj=S
27 26 mpteq2dva φiIjJiiI,jJSj=jJS
28 2 27 breqtrrd φiIGdomDProdjJiiI,jJSj
29 28 ralrimiva φiIGdomDProdjJiiI,jJSj
30 nfcv _iG
31 nfcv _idomDProd
32 nfcsb1v _ix/iJ
33 nfcv _ix
34 nfmpo1 _iiI,jJS
35 nfcv _ij
36 33 34 35 nfov _ixiI,jJSj
37 32 36 nfmpt _ijx/iJxiI,jJSj
38 30 31 37 nfbr iGdomDProdjx/iJxiI,jJSj
39 csbeq1a i=xJ=x/iJ
40 oveq1 i=xiiI,jJSj=xiI,jJSj
41 39 40 mpteq12dv i=xjJiiI,jJSj=jx/iJxiI,jJSj
42 41 breq2d i=xGdomDProdjJiiI,jJSjGdomDProdjx/iJxiI,jJSj
43 38 42 rspc xIiIGdomDProdjJiiI,jJSjGdomDProdjx/iJxiI,jJSj
44 29 43 mpan9 φxIGdomDProdjx/iJxiI,jJSj
45 nfcv _yxiI,jJSj
46 nfcv _jx
47 nfmpo2 _jiI,jJS
48 nfcv _jy
49 46 47 48 nfov _jxiI,jJSy
50 oveq2 j=yxiI,jJSj=xiI,jJSy
51 45 49 50 cbvmpt jx/iJxiI,jJSj=yx/iJxiI,jJSy
52 nfv ij=z
53 32 nfcri ijx/iJ
54 52 53 nfan ij=zjx/iJ
55 39 eleq2d i=xjJjx/iJ
56 55 anbi2d i=xj=zjJj=zjx/iJ
57 54 56 equsexv ii=xj=zjJj=zjx/iJ
58 simprl φxIi=xj=zi=x
59 simplr φxIi=xj=zxI
60 58 59 eqeltrd φxIi=xj=ziI
61 60 biantrurd φxIi=xj=zjJiIjJ
62 61 pm5.32da φxIi=xj=zjJi=xj=ziIjJ
63 anass i=xj=zjJi=xj=zjJ
64 eqcom xz=ijij=xz
65 vex iV
66 vex jV
67 65 66 opth ij=xzi=xj=z
68 64 67 bitr2i i=xj=zxz=ij
69 68 anbi1i i=xj=ziIjJxz=ijiIjJ
70 62 63 69 3bitr3g φxIi=xj=zjJxz=ijiIjJ
71 70 exbidv φxIii=xj=zjJixz=ijiIjJ
72 57 71 bitr3id φxIj=zjx/iJixz=ijiIjJ
73 72 exbidv φxIjj=zjx/iJjixz=ijiIjJ
74 vex zV
75 eleq1w j=zjx/iJzx/iJ
76 74 75 ceqsexv jj=zjx/iJzx/iJ
77 excom jixz=ijiIjJijxz=ijiIjJ
78 73 76 77 3bitr3g φxIzx/iJijxz=ijiIjJ
79 elrelimasn ReliIi×JziIi×JxxiIi×Jz
80 7 79 ax-mp ziIi×JxxiIi×Jz
81 df-br xiIi×JzxziIi×J
82 eliunxp xziIi×Jijxz=ijiIjJ
83 80 81 82 3bitri ziIi×Jxijxz=ijiIjJ
84 78 83 bitr4di φxIzx/iJziIi×Jx
85 84 eqrdv φxIx/iJ=iIi×Jx
86 85 mpteq1d φxIyx/iJxiI,jJSy=yiIi×JxxiI,jJSy
87 51 86 eqtrid φxIjx/iJxiI,jJSj=yiIi×JxxiI,jJSy
88 44 87 breqtrd φxIGdomDProdyiIi×JxxiI,jJSy
89 27 oveq2d φiIGDProdjJiiI,jJSj=GDProdjJS
90 89 mpteq2dva φiIGDProdjJiiI,jJSj=iIGDProdjJS
91 3 90 breqtrrd φGdomDProdiIGDProdjJiiI,jJSj
92 nfcv _xGDProdjJiiI,jJSj
93 nfcv _iDProd
94 30 93 37 nfov _iGDProdjx/iJxiI,jJSj
95 41 oveq2d i=xGDProdjJiiI,jJSj=GDProdjx/iJxiI,jJSj
96 92 94 95 cbvmpt iIGDProdjJiiI,jJSj=xIGDProdjx/iJxiI,jJSj
97 87 oveq2d φxIGDProdjx/iJxiI,jJSj=GDProdyiIi×JxxiI,jJSy
98 97 mpteq2dva φxIGDProdjx/iJxiI,jJSj=xIGDProdyiIi×JxxiI,jJSy
99 96 98 eqtrid φiIGDProdjJiiI,jJSj=xIGDProdyiIi×JxxiI,jJSy
100 91 99 breqtrd φGdomDProdxIGDProdyiIi×JxxiI,jJSy
101 eqid mrClsSubGrpG=mrClsSubGrpG
102 8 12 21 88 100 101 dprd2da φGdomDProdiI,jJS
103 8 12 21 88 100 101 dprd2db φGDProdiI,jJS=GDProdxIGDProdyiIi×JxxiI,jJSy
104 99 90 eqtr3d φxIGDProdyiIi×JxxiI,jJSy=iIGDProdjJS
105 104 oveq2d φGDProdxIGDProdyiIi×JxxiI,jJSy=GDProdiIGDProdjJS
106 103 105 eqtrd φGDProdiI,jJS=GDProdiIGDProdjJS
107 102 106 jca φGdomDProdiI,jJSGDProdiI,jJS=GDProdiIGDProdjJS